### Refine

The Bus Evacuation Problem (BEP) is a vehicle routing problem that arises in emergency planning. It models the evacuation of a region from a set of collection points to a set of capacitated shelters with the help of buses, minimizing the time needed to bring the last person out of the endangered region.
In this work, we describe multiple approaches for finding both lower and upper bounds for the BEP, and apply them in a branch and bound framework. Several node pruning techniques and branching rules are discussed. In computational experiments, we show that solution times of our approach are significantly improved compared to a commercial integer programming solver.

We consider the problem of evacuating a region with the help of buses. For a given set of possible collection points where evacuees gather, and possible shelter locations where evacuees are brought to, we need to determine both collection points and shelters we would like to use, and bus routes that evacuate the region in minimum time.
We model this integrated problem using an integer linear program, and present a branch-cut-and-price algorithm that generates bus tours in its pricing step. In computational experiments we show that our approach is able to solve instances of realistic size in sufficient time for practical application, and considerably outperforms the usage of a generic ILP solver.

By natural or man-made disasters, the evacuation of a whole region or city may become necessary. Apart from private traffic, the evacuation from collection points to secure shelters outside the endangered region will be realized by a bus fleet made available by emergency relief. The arising Bus Evacuation Problem (BEP) is a vehicle scheduling problem, in which a given number of evacuees needs to be transported from a set of collection points to a set of capacitated shelters, minimizing the total evacuation time, i.e., the time needed until the last person is brought to safety.
In this paper we consider an extended version of the BEP, the Robust Bus Evacuation Problem (RBEP), in which the exact numbers of evacuees are not known, but may stem from a set of probable scenarios. However, after a given reckoning time, this uncertainty is eliminated and planners are given exact figures. The problem is to decide for each bus, if it is better to send it right away -- using uncertain numbers of evacuees -- or to wait until the numbers become known.
We present a mixed-integer linear programming formulation for the RBEP and discuss solution approaches; in particular, we present a tabu search framework for finding heuristic solutions of acceptable quality within short computation time. In computational experiments using both randomly generated instances and the real-world scenario of evacuating the city of Kaiserslautern, we compare our solution approaches.

We consider a network flow problem, where the outgoing flow is reduced by a certain percentage in each node. Given a maximum amount of flow that can leave the source node, the aim is to find a solution that maximizes the amount of flow which arrives at the sink.
Starting from this basic model, we include two new, additional aspects: On the one hand, we are able to reduce the loss at some of the nodes; on the other hand, the exact loss values are not known, but may come from a discrete uncertainty set of exponential size.
Applications for problems of this type can be found in evacuation planning, where one would like to improve the safety of nodes such that the number of evacuees reaching safety is maximized.
We formulate the resulting robust flow problem with losses and improvability as a mixed-integer program for finitely many scenarios, and present an iterative scenario-generation procedure that avoids the inclusion of all scenarios from the beginning. In a computational study using both randomly generated instance and realistic data based on the city of Nice, France, we compare our solution algorithms.

Geometric Programming is a useful tool with a wide range of applications in engineering. As in real-world problems input data is likely to be affected by uncertainty, Hsiung, Kim, and Boyd introduced robust geometric programming to include the uncertainty in the optimization process. They also developed a tractable approximation method to tackle this problem. Further, they pose the question whether there exists a tractable reformulation of their robust geometric programming model instead of only an approximation method. We give a negative answer to this question by showing that robust geometric programming is co-NP hard in its natural posynomial form.

The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered.
In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

We argue that the concepts of resilience in engineering science and robustness in mathematical optimization are strongly related. Using evacuation planning as an example application, we demonstrate optimization techniques to improve solution resilience. These include a direct modelling of the uncertainty for stochastic or robust optimization, as well as taking multiple objective functions into account.

We consider an uncertain traveling salesman problem, where distances between nodes are not known exactly, but may stem from an uncertainty set of possible scenarios. This uncertainty set is given as intervals with an additional bound on the number of distances that may deviate from their expected, nominal value.
A recoverable robust model is proposed, that allows a tour to change a bounded number of edges once a scenario becomes known. As the model contains an exponential number of constraints and variables, an iterative algorithm is proposed, in which tours and scenarios are computed alternately.
While this approach is able to find a provably optimal solution to the robust model, it also needs to solve increasingly complex subproblems. Therefore, we also consider heuristic solution procedures based on local search moves using a heuristic estimate of the actual objective function. In computational experiments, these approaches are compared.
Finally, an alternative recovery model is discussed, where a second-stage recovery tour is not required to visit all nodes of the graph. We show that the previously NP-hard evaluation of a fixed solution now becomes solvable in polynomial time.

The ordered weighted averaging objective (OWA) is an aggregate function over multiple optimization criteria which received increasing attention by the research community over the last decade. Different to the ordered weighted sum, weights are attached to ordered objective functions (i.e., a weight for the largest value, a weight for the second-largest value and so on). As this contains max-min or worst-case optimization as a special case, OWA can also be considered as an alternative approach to robust optimization.
For linear programs with OWA objective, compact reformulations exist, which result in extended linear programs. We present new such reformulation models with reduced size. A computational comparison indicates that these formulations improve solution times.