### Refine

#### Keywords

Optimal control methods for the calculation of invariant excitation signals for multibody systems
(2010)

Input signals are needed for the numerical simulation of vehicle multibody systems. With these input data, the equations of motion can be integrated numerically and some output quantities can be calculated from the simulation results. In this work we consider the corresponding inverse problem: We assume that some reference output signals are available, typically gained by measurement and focus on the task to derive the input signals that produce the desired reference output in a suitable sense. If the input data is invariant, i.e., independent of the specific system, it can be transferred and used to excite other system variants. This problem can be formulated as optimal control problem. We discuss solution approaches from optimal control theory, their applicability to this special problem class and give some simulation results.

For the numerical simulation of a mechanical multibody system (MBS), dynamical loads are needed as input data, such as a road profile. With given input quantities, the equations of motion of the system can be integrated. Output quantities for further investigations are calculated from the integration results. In this paper, we consider the corresponding inverse problem: We assume, that a dynamical system and some reference output signals are given. The general task is to derive an input signal, such that the system simulation produces the desired reference output. We present the state-of-the-art method in industrial applications, the iterative learning control method (ILC) and give an application example from automotive industry. Then, we discuss three alternative methods based on optimal control theory for differential algebraic equations (DAEs) and give an overview of their general scheme.

Simulation of multibody systems (mbs) is an inherent part in developing and design of complex mechanical systems. Moreover, simulation during operation gained in importance in the recent years, e.g. for HIL-, MIL- or monitoring applications. In this paper we discuss the numerical simulation of multibody systems on different platforms. The main section of this paper deals with the simulation of an established truck model [9] on different platforms, one microcontroller and two real-time processor boards. Additional to numerical C-code the latter platforms provide the possibility to build the model with a commercial mbs tool, which is also investigated. A survey of different ways of generating code and equations of mbs models is given and discussed concerning handling, possible limitations as well as performance. The presented benchmarks are processed under terms of on-board real time applications. A further important restriction, caused by the real-time requirement, is a fixed integration step size. Whence, carefully chosen numerical integration algorithms are necessary, especially in the case of closed loops in the model. We investigate linearly-implicit time integration methods with fixed step size, so-called Rosenbrock methods, and compare them with respect to their accuracy and performance on the tested processors.