### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (41)
- Bericht (13)
- Wissenschaftlicher Artikel (1)
- Lehrmaterial (1)
- Arbeitspapier (1)

#### Schlagworte

- Mathematikunterricht (9)
- Modellierung (9)
- praxisorientiert (9)
- Lineare Algebra (6)
- modelling (6)
- integer programming (4)
- linear algebra (4)
- mathematical education (4)
- praxis orientated (4)
- Lineare Optimierung (3)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (54)
- Fraunhofer (ITWM) (3)

A single facility problem in the plane is considered, where an optimal location has to be
identified for each of finitely many time-steps with respect to time-dependent weights and
demand points. It is shown that the median objective can be reduced to a special case of the
static multifacility median problem such that results from the latter can be used to tackle the
dynamic location problem. When using block norms as distance measure between facilities,
a Finite Dominating Set (FDS) is derived. For the special case with only two time-steps, the
resulting algorithm is analyzed with respect to its worst-case complexity. Due to the relation
between dynamic location problems for T time periods and T-facility problems, this algorithm
can also be applied to the static 2-facility location problem.

Finding a delivery plan for cancer radiation treatment using multileaf collimators operating in ''step-and-shoot mode'' can be formulated mathematically as a problem of decomposing an integer matrix into a weighted sum of binary matrices having the consecutive-ones property - and sometimes other properties related to the collimator technology. The efficiency of the delivery plan is measured by both the sum of weights in the decomposition, known as the total beam-on time, and the number of different binary matrices appearing in it, referred to as the cardinality, the latter being closely related to the set-up time of the treatment. In practice, the total beam-on time is usually restricted to its minimum possible value, (which is easy to find), and a decomposition that minimises cardinality (subject to this restriction) is sought.

The problem of finding an optimal location X* minimizing the maximum Euclidean distance to existing facilities is well solved by e.g. the Elzinga-Hearn algorithm. In practical situations X* will however often not be feasible. We therefore suggest in this note a polynomial algorithm which will find an optimal location X^F in a feasible subset F of the plane R^2

In this paper, we study the inverse maximum flow problem under \(\ell_\infty\)-norm and show that this problem can be solved by finding a maximum capacity path on a modified graph. Moreover, we consider an extension of the problem where we minimize the number of perturbations among all the optimal solutions of Chebyshev norm. This bicriteria version of the inverse maximum flow problem can also be solved in strongly polynomial time by finding a minimum \(s - t\) cut on the modified graph with a new capacity function.

Selection of new projects is one of the major decision making activities in any company. Given a set of potential projects to invest, a subset which matches the company's strategy and internal resources best has to be selected. In this paper, we propose a multicriteria model for portfolio selection of projects, where we take into consideration that each of the potential projects has several - usually conflicting - values.

We generalize the classical shortest path problem in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a traversal time on each arc. The resulting problem, called time-dependent bicriteria shortest path problem (TdBiSP) has several interesting practical applications, but has not attained much attention in the literature.

In this paper we generalize the classical shortest path problem in two ways. We consider two objective functions and time-dependent data. The resulting problem, called the time-dependent bicriteria shortest path problem (TdBiSP), has several interesting practical applications, but has not gained much attention in the literature.

In this paper a modified version of dynamic network
ows is discussed. Whereas dynamic network flows are widely analyzed already, we consider a dynamic flow problem with aggregate arc capacities called Bridge
Problem which was introduced by Melkonian [Mel07]. We extend his research to integer flows and show that this problem is strongly NP-hard. For practical relevance we also introduce and analyze the hybrid bridge problem, i.e. with underlying networks whose arc capacity can limit aggregate flow (bridge problem) or the flow entering an arc at each time (general dynamic flow). For this kind of problem we present efficient procedures for
special cases that run in polynomial time. Moreover, we present a heuristic for general hybrid graphs with restriction on the number of bridge arcs.
Computational experiments show that the heuristic works well, both on random graphs and on graphs modeling also on realistic scenarios.

We consider the problem of finding efficient locations of surveillance cameras, where we distinguish
between two different problems. In the first, the whole area must be monitored and the number of cameras
should be as small as possible. In the second, the goal is to maximize the monitored area for a fixed number of
cameras. In both of these problems, restrictions on the ability of the cameras, like limited depth of view or range
of vision are taken into account. We present solution approaches for these problems and report on results of
their implementations applied to an authentic problem. We also consider a bicriteria problem with two objectives:
maximizing the monitored area and minimizing the number of cameras, and solve it for our study case.