### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (38)
- Bericht (13)
- Wissenschaftlicher Artikel (1)
- Lehrmaterial (1)
- Arbeitspapier (1)

#### Schlagworte

- Mathematikunterricht (9)
- Modellierung (9)
- praxisorientiert (9)
- Lineare Algebra (6)
- modelling (6)
- integer programming (4)
- linear algebra (4)
- mathematical education (4)
- praxis orientated (4)
- Lineare Optimierung (3)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (54) (entfernen)

Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

The Weber problem for a given finite set of existing facilities {cal E}x = {Ex_1,Ex_2, ... ,Ex_M} subset R^2 with positive weights w_m (m = 1, ... ,M) is to find a new facility X* in R^2 such that sum_{m=1}^{M} w_{m}d(X,Ex_m) is minimized for some distance function d. In this paper we consider distances defined by polyhedral gauges. A variation of this problem is obtained if barriers are introduced which are convex polygonal subsets of the plane where neither location of new facilities nor traveling is allowed. Such barriers like lakes, military regions, national parks or mountains are frequently encountered in practice.From a mathematical point of view barrier problems are difficult, since the prensence of barriers destroys the convexity of the objective function. Nevertheless, this paper establishes a descretization result: One of the grid points in the grid defined by the existing facilities and the fuundamental directions of the gauge distances can be proved to be an optimal location. Thus the barrier problem can be solved with a polynomial algorithm.

The problem of finding an optimal location X* minimizing the maximum Euclidean distance to existing facilities is well solved by e.g. the Elzinga-Hearn algorithm. In practical situations X* will however often not be feasible. We therefore suggest in this note a polynomial algorithm which will find an optimal location X^F in a feasible subset F of the plane R^2

In this paper we consider the problem of finding in a given graph a minimal weight subtree of connected subgraph, which has a given number of edges. These NP-hard combinatorial optimization problems have various applications in the oil industry, in facility layout and graph partitioning. We will present different heuristic approaches based on spanning tree and shortest path methods and on an exact algorithm solving the problem in polynomial time if the underlying graph is a tree. Both the edge- and node weighted case are investigated and extensive numerical results on the behaviour of the heuristics compared to optimal solutions are presented. The best heuristic yielded results within an error margin of less than one percent from optimality for most cases. In a large percentage of tests even optimal solutions have been found.

There are several good reasons to introduce classification schemes for optimization problems including, for instance, the ability for concise problem statement opposed to verbal, often ambiguous, descriptions or simple data encoding and information retrieval in bibliographical information systems or software libraries. In some branches like scheduling and queuing theory classification is therefore a widely accepted and appreciated tool. The aim of this paper is to propose a 5-position classification which can be used to cover all location problems. We will provide a list of currentliy available symbols and indicate its usefulness in a - necessarily non-comprehensive - list of classical location problems. The classification scheme is in use since 1992 and has since proved to be useful in research, software development, classroom, and for overview articles.

In this paper network location problems with several objectives are discussed, where every single objective is a classical median objective function. We will lock at the problem of finding Pareto optimal locations and lexicographically optimal locations. It is shown that for Pareto optimal locations in undirected networks no node dominance result can be shown. Structural results as well as efficient algorithms for these multi-criteria problems are developed. In the special case of a tree network a generalization of Goldman's dominance algorithm for finding Pareto locations is presented.

We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet defining. We show its superior computational performance by benchmarking it on a well known data set.

Many polynomially solvable combinatorial optimization problems (COP) become NP when we require solutions to satisfy an additional cardinality constraint. This family of problems has been considered only recently. We study a newproblem of this family: the k-cardinality minimum cut problem. Given an undirected edge-weighted graph the k-cardinality minimum cut problem is to find a partition of the vertex set V in two sets V 1 , V 2 such that the number of the edges between V 1 and V 2 is exactly k and the sum of the weights of these edges is minimal. A variant of this problem is the k-cardinality minimum s-t cut problem where s and t are fixed vertices and we have the additional request that s belongs to V 1 and t belongs to V 2 . We also consider other variants where the number of edges of the cut is constrained to be either less or greater than k. For all these problems we show complexity results in the most significant graph classes.

Given a railway network together with information on the population and their use of the railway infrastructure, we are considering the e ffects of introducing new train stops in the existing railway network. One e ffect concerns the accessibility of the railway infrastructure to the population, measured in how far people live from their nearest train stop. The second effect we study is the change in travel time for the railway customers that is induced by new train stops. Based on these two models, we introduce two combinatorial optimization problems and give NP-hardness results for them. We suggest an algorithmic approach for the model based on travel time and give first experimental results.