### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (45)
- Bericht (13)
- Wissenschaftlicher Artikel (1)
- Lehrmaterial (1)
- Arbeitspapier (1)

#### Schlagworte

- Mathematikunterricht (9)
- Modellierung (9)
- praxisorientiert (9)
- Lineare Algebra (6)
- modelling (6)
- integer programming (4)
- linear algebra (4)
- mathematical education (4)
- praxis orientated (4)
- Lineare Optimierung (3)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (58)
- Fraunhofer (ITWM) (3)

Multifacility location problems arise in many real world applications. Often, the facilities can only be placed in feasible regions such as development or industrial areas. In this paper we show the existence of a finite dominating set (FDS) for the planar multifacility location problem with polyhedral gauges as distance functions, and polyhedral feasible regions, if the interacting facilities form a tree. As application we show how to solve the planar 2-hub location problem in polynomial time. This approach will yield an ε-approximation for the euclidean norm case polynomial in the input data and 1/ε.

In this paper a modified version of dynamic network
ows is discussed. Whereas dynamic network flows are widely analyzed already, we consider a dynamic flow problem with aggregate arc capacities called Bridge
Problem which was introduced by Melkonian [Mel07]. We extend his research to integer flows and show that this problem is strongly NP-hard. For practical relevance we also introduce and analyze the hybrid bridge problem, i.e. with underlying networks whose arc capacity can limit aggregate flow (bridge problem) or the flow entering an arc at each time (general dynamic flow). For this kind of problem we present efficient procedures for
special cases that run in polynomial time. Moreover, we present a heuristic for general hybrid graphs with restriction on the number of bridge arcs.
Computational experiments show that the heuristic works well, both on random graphs and on graphs modeling also on realistic scenarios.

We present a new approach to handle uncertain combinatorial optimization problems that uses solution ranking procedures to determine the degree of robustness of a solution. Unlike classic concepts for robust optimization, our approach is not purely based on absolute quantitative performance, but also includes qualitative aspects that are of major importance for the decision maker.
We discuss the two variants, solution ranking and objective ranking robustness, in more detail, presenting problem complexities and solution approaches. Using an uncertain shortest path problem as a computational example, the potential of our approach is demonstrated in the context of evacuation planning due to river flooding.

In this paper we consider the problem of decomposing a given integer matrix A into
a positive integer linear combination of consecutive-ones matrices with a bound on the
number of columns per matrix. This problem is of relevance in the realization stage
of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf
collimators with limited width. Constrained and unconstrained versions of the problem
with the objectives of minimizing beam-on time and decomposition cardinality are considered.
We introduce a new approach which can be used to find the minimum beam-on
time for both constrained and unconstrained versions of the problem. The decomposition
cardinality problem is shown to be NP-hard and an approach is proposed to solve the
lexicographic decomposition problem of minimizing the decomposition cardinality subject
to optimal beam-on time.

We consider the problem of finding efficient locations of surveillance cameras, where we distinguish
between two different problems. In the first, the whole area must be monitored and the number of cameras
should be as small as possible. In the second, the goal is to maximize the monitored area for a fixed number of
cameras. In both of these problems, restrictions on the ability of the cameras, like limited depth of view or range
of vision are taken into account. We present solution approaches for these problems and report on results of
their implementations applied to an authentic problem. We also consider a bicriteria problem with two objectives:
maximizing the monitored area and minimizing the number of cameras, and solve it for our study case.

Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered.
In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

We argue that the concepts of resilience in engineering science and robustness in mathematical optimization are strongly related. Using evacuation planning as an example application, we demonstrate optimization techniques to improve solution resilience. These include a direct modelling of the uncertainty for stochastic or robust optimization, as well as taking multiple objective functions into account.

The sink location problem is a combination of network flow and location problems: From a given set of nodes in a flow network a minimum cost subset \(W\) has to be selected such that given supplies can be transported to the nodes in \(W\). In contrast to its counterpart, the source location problem which has already been studied in the literature, sinks have, in general, a limited capacity. Sink location has a decisive application in evacuation planning, where the supplies correspond to the number of evacuees and the sinks to emergency shelters.
We classify sink location problems according to capacities on shelter nodes, simultaneous or non-simultaneous flows, and single or multiple assignments of evacuee groups to shelters. Resulting combinations are interpreted in the evacuation context and analyzed with respect to their worst-case complexity status.
There are several approaches to tackle these problems: Generic solution methods for uncapacitated problems are based on source location and modifications of the network. In the capacitated case, for which source location cannot be applied, we suggest alternative approaches which work in the original network. It turns out that latter class algorithms are superior to the former ones. This is established in numerical tests including random data as well as real world data from the city of Kaiserslautern, Germany.