Refine
Year of publication
Document Type
- Preprint (30)
- Periodical Part (21)
- Article (13)
Has Fulltext
- yes (64)
Is part of the Bibliography
- no (64)
Keywords
Faculty / Organisational entity
- Fachbereich Physik (64)
Suppression of the magnetocrystalline bulk anisotropy in thin epitaxial Co(110) films on Cu(110)
(1996)
We report on an unexpected suppression of the magnetocrystalline anisotropy contribution in epitaxial fcc Co(110) films on Cu(110) below a thickness of dc=(50 +/- 10) Å. For film thicknesses larger than dc the measured anisotropy value agrees with published data. Measurements on films with reduced strain indicate a large strain dependence of dc . A model calculation based on a crystal-field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimen-tally observed anomalies. Our results indicate that the usually applied phenomenological description of anisotropies, assuming additive free energy terms for each anisotropy contribution, fails in this case.
Oscillatory surface in-plane lattice spacing during growth of Co and Cu on a Cu(001) single crystal
(1995)
We report results of the switching properties of Stoner-like magnetic particles subject to short magnetic field pulses, obtained by numerical investigations. We discuss the switching properties as a function of the external field pulse strength and direction, the pulse length and the pulse shape. For field pulses long compared to the ferromagnetic resonance precession time the switching behavior is governed by the magnetic damping term, whereas in the limit of short field pulses the switching properties are dominated by the details of the precession of the magnetic moment. In the latter case, by choosing the right field pulse parameters, the magnetic damping term is of minor importance and ultrafast switching can be achieved. Switching can be obtained in an enlarged angular range of the direction of the applied field compared to the case of long pulses.
Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.
The static and spin wave properties of regular square lattices of magnetic dots of 0.5-2 microm dot diameter and 1-4 microm periodicity patterned in permalloy films have been investigated by Brillouin light scattering. The samples have been structured using x-ray lithography and ion beam etching. The Brillouin light scattering spectra reveal both surface and bulk spin wave modes. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. For the samples with smallest dot separation of 0.1 microm a fourfold in-plane magnetic anisotropy with the easy axis directed along the pattern diagonal is observed, indicating anisotropic coupling between the dots.
A computer control for a Sandercock-type multipath tandem Fabry-Perot interferometer is described, which offers many advantages over conventionally used analog control: The range of stability is increased due to active control of the laser light intensity and the mirror dither amplitude. The alignment is fully automated enabling start of a measurement within a minute after start of align, including optionally finding the optimum focus on the sample. The software control enables a programmable series of measurements with control of, e.g., the position and rotation of the sample, the angle of light incidence, the sample temperature, or the strength and direction of an applied magnetic field. Built-in fitting routines allow for a precise determination of frequency positions of excitation peaks combined with increased frequency accuracy due to a correction of a residual nonlinearity of the mirror stage drive.
Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.
Annual Report 1999
(2000)
Phase velocities of surface acoustic waves in several boron nitride films were investigated by Brillouin light scattering. In the case of films with predominantly hexagonal crystal structure, grown under conditions close to the nucleation threshold of cubic BN, four independent elastic constants have been determined from the dispersion of the Rayleigh and the first Sezawa mode. The large elastic anisotropy of up to c11/c33 = 0.1 is attributed to a pronounced texture with the c-axes of the crystallites parallel to the film plane. In the case of cubic BN films the dispersion of the Rayleigh wave provides evidence for the existence of a more compliant layer at the substrate-film interface. The observed broadening of the Rayleigh mode is identified to be caused by the film morphology.