-
Finite Dominating Sets for Rectilinear Center Problems with Polyhedral Barriers (1999)
- In planar location problems with barriers one considers regions which are forbidden for the siting of new facilities as well as for trespassing. These problems areimportant since they reflect various real-world situations.The resulting mathematical models have a non-convex objectivefunction and are therefore difficult to tackle using standardmethods of location theory even in the case of simple barriershapes and distance funtions.For the case of center objectives with barrier distancesobtained from the rectilinear or Manhattan metric it is shown that the problem can be solved by identifying a finitedominating set (FDS) the cardinality of which is bounded bya polynomial in the size of the problem input. The resultinggenuinely polynomial algorithm can be combined with bound computations which are derived from solving closely connectedrestricted location and network location problems.It is shown that the results can be extended to barrier center problems with respect to arbitrary block norms having fourfundamental directions.
-
The continuous stop location problem in public transportation networks (2002)
- In this paper we consider the location of stops along the edges of an already existing public transportation network. This can be the introduction of bus stops along some given bus routes, or of railway stations along the tracks in a railway network. The positive effect of new stops is given by the better access of the potential customers to their closest station, while the increasement of travel time caused by the additional stopping activities of the trains leads to a negative effect. The goal is to cover all given demand points with a minimal amount of additional traveling time, where covering may be defined with respect to an arbitrary norm (or even a gauge). Unfortunately, this problem is NP-hard, even if only the Euclidean distance is used. In this paper, we give a reduction to a finite candidate set leading to a discrete set covering problem. Moreover, we identify network structures in which the coefficient matrix of the resulting set covering problem is totally unimodular, and use this result to derive efficient solution approaches. Various extensions of the problem are also discussed.