### Refine

#### Year of publication

- 2000 (2) (remove)

#### Document Type

- Article (2) (remove)

#### Keywords

- Classical mechanics (1)
- PT-symmetry (1)
- Quantum mechanics (1)
- Wannier-Stark systems (1)
- complex phase space (1)
- integrable systems (1)
- lifetimes (1)
- resonances (1)
- two-dimensional (1)

The analyticity property of the one-dimensional complex Hamiltonian system H(x,p)=H_1(x_1,x_2,p_1,p_2)+iH_2(x_1,x_2,p_1,p_2) with p=p_1+ix_2, x=x_1+ip_2 is exploited to obtain a new class of the corresponding two-dimensional integrable Hamiltonian systems where H_1 acts as a new Hamiltonian and H_2 is a second integral of motion. Also a possible connection between H_1 and H_2 is sought in terms of an auto-B"acklund transformation.

A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this method we calculate the complex Wannier-Stark spectrum for a non-separable 2D potential realized in optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.