### Filtern

#### Erscheinungsjahr

- 2012 (4) (entfernen)

#### Dokumenttyp

- Preprint (3)
- Wissenschaftlicher Artikel (1)

This papers deals with the minimization of seminorms \(\|L\cdot\|\) on \(\mathbb R^n\) under the constraint of a bounded I-divergence \(D(b,H\cdot)\). The I-divergence is also known as Kullback-Leibler divergence and appears in many models in imaging science, in particular when dealing with Poisson data. Typically, \(H\) represents here, e.g., a linear blur operator and \(L\) is some discrete derivative operator. Our preference for the constrained approach over
the corresponding penalized version is based on the fact that the I-divergence of data
corrupted, e.g., by Poisson noise or multiplicative Gamma noise can be estimated by statistical methods. Our minimization technique rests upon relations between constrained and penalized convex problems and resembles the idea of Morozov's discrepancy principle.
More precisely, we propose first-order primal-dual algorithms which reduce the problem to the solution of certain proximal minimization problems in each iteration step. The most interesting of these proximal minimization problems is an I-divergence constrained least squares problem. We solve this problem by connecting it to the corresponding I-divergence
penalized least squares problem with an appropriately chosen regularization parameter. Therefore, our algorithm produces not only a sequence of vectors which converges to a minimizer of the constrained problem but also a sequence of parameters which convergences to a regularization parameter so that the penalized problem has the same solution as our constrained one. In other words, the solution of this penalized problem fulfills the I-divergence constraint. We provide the proofs which are necessary to understand
our approach and demonstrate the performance of our algorithms for different
image restoration examples.

This paper considers supervised multi-class image segmentation: from a labeled set of
pixels in one image, we learn the segmentation and apply it to the rest of the image or to other similar images. We study approaches with p-Laplacians, (vector-valued) Reproducing Kernel Hilbert
Spaces (RKHSs) and combinations of both. In all approaches we construct segment membership
vectors. In the p-Laplacian model the segment membership vectors have to fulfill a certain probability simplex constraint. Interestingly, we could prove that this is not really a constraint in the case p=2 but is automatically fulfilled. While the 2-Laplacian model gives a good general segmentation, the case of the 1-Laplacian tends to neglect smaller segments. The RKHS approach has
the benefit of fast computation. This direction is motivated by image colorization, where a given
dab of color is extended to a nearby region of similar features or to another image. The connection
between colorization and multi-class segmentation is explored in this paper with an application to
medical image segmentation. We further consider an improvement using a combined method. Each
model is carefully considered with numerical experiments for validation, followed by medical image
segmentation at the end.

Recently convex optimization models were successfully applied
for solving various problems in image analysis and restoration.
In this paper, we are interested in relations between
convex constrained optimization problems
of the form
\({\rm argmin} \{ \Phi(x)\) subject to \(\Psi(x) \le \tau \}\)
and their penalized counterparts
\({\rm argmin} \{\Phi(x) + \lambda \Psi(x)\}\).
We recall general results on the topic by the help of an epigraphical projection.
Then we deal with the special setting \(\Psi := \| L \cdot\|\) with \(L \in \mathbb{R}^{m,n}\)
and \(\Phi := \varphi(H \cdot)\),
where \(H \in \mathbb{R}^{n,n}\) and \(\varphi: \mathbb R^n \rightarrow \mathbb{R} \cup \{+\infty\} \)
meet certain requirements which are often fulfilled in image processing models.
In this case we prove by incorporating the dual problems
that there exists a bijective function
such that
the solutions of the constrained problem coincide with those of the
penalized problem if and only if \(\tau\) and \(\lambda\) are in the graph
of this function.
We illustrate the relation between \(\tau\) and \(\lambda\) for various problems
arising in image processing.
In particular, we point out the relation to the Pareto frontier for joint sparsity problems.
We demonstrate the performance of the
constrained model in restoration tasks of images corrupted by Poisson noise
with the \(I\)-divergence as data fitting term \(\varphi\)
and in inpainting models with the constrained nuclear norm.
Such models can be useful if we have a priori knowledge on the image rather than on the noise level.

Recently convex optimization models were successfully applied for solving various problems in image analysis and restoration. In this paper, we are interested in relations between convex constrained optimization problems of the form \(min\{\Phi(x)\) subject to \(\Psi(x)\le\tau\}\) and their non-constrained, penalized counterparts \(min\{\Phi(x)+\lambda\Psi(x)\}\). We start with general considerations of the topic and provide a novel proof which ensures that a solution of the constrained problem with given \(\tau\) is also a solution of the on-constrained problem for a certain \(\lambda\). Then we deal with the special setting that \(\Psi\) is a semi-norm and \(\Phi=\phi(Hx)\), where \(H\) is a linear, not necessarily invertible operator and \(\phi\) is essentially smooth and strictly convex. In this case we can prove via the dual problems that there exists a bijective function which maps \(\tau\) from a certain interval to \(\lambda\) such that the solutions of the constrained problem coincide with those of the non-constrained problem if and only if \(\tau\) and \(\lambda\) are in the graph of this function. We illustrate the relation between \(\tau\) and \(\lambda\) by various problems arising in image processing. In particular, we demonstrate the performance of the constrained model in restoration tasks of images corrupted by Poisson noise and in inpainting models with constrained nuclear norm. Such models can be useful if we have a priori knowledge on the image rather than on the noise level.