### Refine

#### Keywords

Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the e effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.

A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual(vacuum) instanton is recovered.The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.

Abstact. The tunnel splitting in biaxial antiferromagnetic particles is studied with a magnetic field applied along the hard anisotropy axis. We observe the oscillation of tunnel splitting as a function of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings. The oscillation is similar to the recent experimental result with Fe8 molecular clusters.

Abstract: The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspondence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable phase of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is significant for quantum phase interference is discovered with the quantum theory of spin systems besides the known phase obtained with the semiclassical treatment of spin. We also show the energy dependence of the effect and obtain the tunneling splitting at excited states with the help of periodic instantons.