### Refine

#### Keywords

This paper disscuses the minimal area rectangular packing problem of how to pack a set of specified, non-overlapping rectangels into a rectangular container of minimal area. We investigate different mathematical programming approaches of this and introduce a novel approach based on non-linear optimization and the \\\"tunneling effect\\\" achieved by a relaxation of the non-overlapping constraints.

We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented.