### Refine

#### Document Type

- Preprint (3) (remove)

#### Keywords

- Perona-Malik filter (1)
- anisotropic diffusion (1)
- finite volume methods (1)
- image denoising (1)
- image processing (1)
- localization (1)
- penalization (1)
- pseudospectral methods (1)
- regularization (1)
- scale-space (1)

The edge enhancement property of a nonlinear diffusion equation with a suitable expression for the diffusivity is an important feature for image processing. We present an algorithm to solve this equation in a wavelet basis and discuss its one dimensional version in some detail. Sample calculations demonstrate principle effects and treat in particular the case of highly noise perturbed signals. The results are discussed with respect to performance, efficiency, choice of parameters and are illustrated by a large number of figures. Finally, a comparison with a Fourier method and a finite volume method is performed.

In spite of its lack of theoretical justification, nonlinear diffusion filtering has become a powerful image enhancement tool in the recent years. The goal of the present paper is to provide a mathematical foundation for nonlinear diffusion filtering as a scale-space transformation which is flexible enough to simplify images without loosing the capability of enhancing edges. By stuying the Lyapunow functional, it is shown that nonlinear diffusion reduces Lp norms and central moments and increases the entropy of images. The proposed anisotropic class utilizes a diffusion tensor which may be adapted to the image structure. It permits existence, uniqueness and regularity results, the solution depends continuously on the initial image, and it fulfills an extremum principle. All considerations include linear and certain nonlinear isotropic models and apply to m-dimensional vector-valued images. The results are juxtaposed to linear and morphological scale-spaces.

We derive some asymptotics for a new approach to curve estimation proposed by Mr'{a}zek et al. cite{MWB06} which combines localization and regularization. This methodology has been considered as the basis of a unified framework covering various different smoothing methods in the analogous two-dimensional problem of image denoising. As a first step for understanding this approach theoretically, we restrict our discussion here to the least-squares distance where we have explicit formulas for the function estimates and where we can derive a rather complete asymptotic theory from known results for the Priestley-Chao curve estimate. In this paper, we consider only the case where the bias dominates the mean-square error. Other situations are dealt with in subsequent papers.