An approximation procedure for the Boltzmann equation based on random choices of collision pairs from a fixed velocity set and on discrete velocity models is designed. In a suitable limit, the procedure is shown to converge to the time-discretized and spatially homogeneous Boltzmann equation.

The efficient numerical treatment of the Boltzmann equation is a very important task in many fields of application. Most of the practically relevant numerical schemes are based on the simulation of large particle systems that approximate the evolution of the distribution function described by the Boltzmann equation. In particular, stochastic particle systems play an important role in the construction of various numerical algorithms.