### Refine

#### Keywords

#### Faculty / Organisational entity

For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable mathematical methods are needed to handle such problems optimal using workstation class computers. Since the exact solution would require super-computer capabilities we concentrate on approximate solutions with a high degree of accuracy. The following approaches are studied: 3D diffusion approximations and 3D ray-tracing methods.

Consider a cooling process described by a nonlinear heat equation. We are interested to recover the initial temperature from temperature measurements which are available on a part of the boundary for some time. Up to now even for the linear heat equation such a problem has been usually studied as a nonlinear ill-posed operator equation, and regularization methods involving Frechet derivatives have been applied. We propose a fast derivative-free iterative method. Numerical results are presented for the glass cooling process, where nonlinearity appears due to radiation.

Laser-induced thermotherapy (LITT) is an established minimally invasive percutaneous technique of tumor ablation. Nevertheless, there is a need to predict the effect of laser applications and optimizing irradiation planning in LITT. Optical attributes (absorption, scattering) change due to thermal denaturation. The work presents the possibility to identify these temperature dependent parameters from given temperature measurements via an optimal control problem. The solvability of the optimal control problem is analyzed and results of successful implementations are shown.

In this article a new numerical solver for simulations of district heating networks is presented. The numerical method applies the local time stepping introduced in [11] to networks of linear advection equations. In combination with the high order approach of [4] an accurate and very efficient scheme is developed. In several numerical test cases the advantages for simulations of district heating networks are shown.

Simulating the flow of water in district heating networks requires numerical methods which are independent of the CFL condition. We develop a high order scheme for networks of advection equations allowing large time steps. With the MOOD technique unphysical oscillations of non smooth solutions are avoided. In numerical tests the applicability to real networks is shown.