### Refine

#### Keywords

With this article we first like to give a brief review on wavelet thresholding methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these applications are based on Gaussian approximations of the empirical coefficients. For regression and density estimation with independent observations, we establish joint asymptotic normality of the empirical coefficients by means of strong approximations. Then we describe how one can prove asymptotic normality under mixing conditions on the observations by cumulant techniques.; In the second part, we apply these non-linear adaptive shrinking schemes to spectral estimation problems for both a stationary and a non-stationary time series setup. For the latter one, in a model of Dahlhaus on the evolutionary spectrum of a locally stationary time series, we present two different approaches. Moreover, we show that in classes of anisotropic function spaces an appropriately chosen wavelet basis automatically adapts to possibly different degrees of regularity for the different directions. The resulting fully-adaptive spectral estimator attains the rate that is optimal in the idealized Gaussian white noise model up to a logarithmic factor.

In the modeling of biological phenomena, in living organisms whether the measurements are of blood pressure, enzyme levels, biomechanical movements or heartbeats, etc., one of the important aspects is time variation in the data. Thus, the recovery of a "smooth" regression or trend function from noisy time-varying sampled data becomes a problem of particular interest. Here we use non-linear wavelet thresholding to estimate a regression or a trend function in the presence of additive noise which, in contrast to most existing models, does not need to be stationary. (Here, nonstationarity means that the spectral behaviour of the noise is allowed to change slowly over time.). We develop a procedure to adapt existing threshold rules to such situations, e.g., that of a time-varying variance in the errors. Moreover, in the model of curve estimation for functions belonging to a Besov class with locally stationary errors, we derive a near-optimal rate for the L2-risk between the unknown function and our soft or hard threshold estimator, which holds in the general case of an error distribution with bounded cumulants. In the case of Gaussian errors, a lower bound on the asymptotic minimax rate in the wavelet coefficient domain is also obtained. Also it is argued that a stronger adaptivity result is possible by the use of a particular location and level dependent threshold obtained by minimizing Stein's unbiased estimate of the risk. In this respect, our work generalizes previous results, which cover the situation of correlated, but stationary errors. A natural application of our approach is the estimation of the trend function of nonstationary time series under the model of local stationarity. The method is illustrated on both an interesting simulated example and a biostatistical data-set, measurements of sheep luteinizing hormone, which exhibits a clear nonstationarity in its variance.

We develop a test for stationarity of a time series against the alternative of a time-changing covariance structure. Using localized versions of the periodogram, we obtain empirical versions of a reasonable notion of a time-varying spectral density. Coefficients w.r.t. a Haar wavelet series expansion of such a time-varying periodogram are a possible indicator whether there is some deviation from covariance stationarity. We propose a test based on the limit distribution of these empirical coefficients.

We derive minimax rates for estimation in anisotropic smoothness classes. This rate is attained by a coordinatewise thresholded wavelet estimator based on a tensor product basis with separate scale parameter for every dimension. It is shown that this basis is superior to its one-scale multiresolution analog, if different degrees of smoothness in different directions are present.; As an important application we introduce a new adaptive wavelet estimator of the time-dependent spectrum of a locally stationary time series. Using this model which was resently developed by Dahlhaus, we show that the resulting estimator attains nearly the rate, which is optimal in Gaussian white noise, simultaneously over a wide range of smoothness classes. Moreover, by our new approach we overcome the difficulty of how to choose the right amount of smoothing, i.e. how to adapt to the appropriate resolution, for reconstructing the local structure of the evolutionary spectrum in the time-frequency plane.

We consider wavelet estimation of the time-dependent (evolutionary) power spectrum of a locally stationary time series. Allowing for departures from stationary proves useful for modelling, e.g., transient phenomena, quasi-oscillating behaviour or spectrum modulation. In our work wavelets are used to provide an adaptive local smoothing of a short-time periodogram in the time-freqeuncy plane. For this, in contrast to classical nonparametric (linear) approaches we use nonlinear thresholding of the empirical wavelet coefficients of the evolutionary spectrum. We show how these techniques allow for both adaptively reconstructing the local structure in the time-frequency plane and for denoising the resulting estimates. To this end a threshold choice is derived which is motivated by minimax properties w.r.t. the integrated mean squared error. Our approach is based on a 2-d orthogonal wavelet transform modified by using a cardinal Lagrange interpolation function on the finest scale. As an example, we apply our procedure to a time-varying spectrum motivated from mobile radio propagation.

We consider nonparametric estimation of the coefficients a_i(.), i=1,...,p, on a time-varying autoregressive process. Choosing an orthonormal wavelet basis representation of the functions a_i(.), the empirical wavelet coefficients are derived from the time series data as the solution of a least squares minimization problem. In order to allow the a_i(.) to be functions of inhomogeneous regularity, we apply nonlinear thresholding to the empirical coefficients and obtain locally smoothed estimates of the a_i(.). We show that the resulting estimators attain the usual minimax L_2-rates up to a logarithmic factor, simultaneously in a large scale of Besov classes. The finite-sample behaviour of our procedure is demonstrated by application to two typical simulated examples.