### Refine

#### Keywords

Consider a cooling process described by a nonlinear heat equation. We are interested to recover the initial temperature from temperature measurements which are available on a part of the boundary for some time. Up to now even for the linear heat equation such a problem has been usually studied as a nonlinear ill-posed operator equation, and regularization methods involving Frechet derivatives have been applied. We propose a fast derivative-free iterative method. Numerical results are presented for the glass cooling process, where nonlinearity appears due to radiation.

Piezoelectric filters are used in telecommunication to filter electrical signals. This report deals with the problem of calculating passing and damped frequency intervals for a filter with given geometrical configurations and materials. Only periodic filters, which are widely used in practice, were considered. These filters consist of periodically arranged cells. For a small amount of cells a numerical procedure to visualise the wave propagation in the filter was developed. For a big number of cells another model of the filter was obtained. In this model it is assumed that the filter occupies an infinite domain. This leads to a differential equation, with periodic coefficients, that describes propagation of the wave with a given frequency in the filter. To analyse this equation the Spectral Theory for Periodic Operators had to be employed. Different ways -- analytical and numerical -- to apply the theory were proposed and analysed.