### Filtern

#### Schlagworte

- Location Theory (6)
- Algebraic Optimization (2)
- Approximation (2)
- Geometrical Algorithms (2)
- Multicriteria Optimization (2)
- Algebraic optimization (1)
- Analysis (1)
- Applications (1)
- Bisector (1)
- Continuous Location (1)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (20)
- Fraunhofer (ITWM) (1)

Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

Robust facility location
(1998)

Let A be a nonempty finite subset of R^2 representing the geographical coordinates of a set of demand points (towns, ...), to be served by a facility, whose location within a given region S is sought. Assuming that the unit cost for a in A if the facility is located at x in S is proportional to dist(x,a) - the distance from x to a - and that demand of point a is given by w_a, minimizing the total trnsportation cost TC(w,x) amounts to solving the Weber problem. In practice, it may be the case, however, that the demand vector w is not known, and only an estimator {hat w} can be provided. Moreover the errors in sich estimation process may be non-negligible. We propose a new model for this situation: select a threshold valus B 0 representing the highest admissible transportation cost. Define the robustness p of a location x as the minimum increase in demand needed to become inadmissible, i.e. p(x) = min{||w^*-{hat w}|| : TC(w^*,x) B, w^* = 0} and solve then the optimization problem max_{x in S} p(x) to get the most robust location.

In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

In this paper we consider generalizations of multifacility location problems in which as an additional constraint the new facilities are not allowed to be located in a presprcified region. We propose several different solution schemes for this non-convex optimization problem. These include a linear programming type approach, penalty approaches and barrier approaches. Moreover, structural results as well as illustratrive examples showing the difficulties of this problem are presented

In continous location problems we are given a set of existing facilities and we are looking for the location of one or several new facilities. In the classical approaches weights are assigned to existing facilities expressing the importance of the new facilities for the existing ones. In this paper, we consider a pointwise defined objective function where the weights are assigned to the existing facilities depending on the location of the new facility. This approach is shown to be a generalization of the median, center and centdian objective functions. In addition, this approach allows to formulate completely new location models. Efficient algorithms as well as structure results for this algebraic approach for location problems are presented. Extensions to the multifacility and restricted case are also considered.

In this paper we consider the problem of optimizing a piecewise-linear objective function over a non-convex domain. In particular we do not allow the solution to lie in the interior of a prespecified region R. We discuss the geometrical properties of this problems and present algorithms based on combinatorial arguments. In addition we show how we can construct quite complicated shaped sets R while maintaining the combinatorial properties.

In this paper we deal with the determination of the whole set of Pareto-solutions of location problems with respect to Q general criteria. These criteria include as particular instances median, center or cent-dian objective functions. The paper characterizes the set of Pareto-solutions of all these multicriteria problems. An efficient algorithm for the planar case is developed and its complexity is established. the proposed approach is more general than the previously published approaches to multicriteria location problems and includes almost all of them as particular instances.

Let rC and rD be two convexdistance funtions in the plane with convex unit balls C and D. Given two points, p and q, we investigate the bisector, B(p,q), of p and q, where distance from p is measured by rC and distance from q by rD. We provide the following results. B(p,q) may consist of many connected components whose precise number can be derived from the intersection of the unit balls, C nd D. The bisector can contain bounded or unbounded 2-dimensional areas. Even more surprising, pieces of the bisector may appear inside the region of all points closer to p than to q. If C and D are convex polygons over m and m vertices, respectively, the bisector B(p,q) can consist of at most min(m,n) connected components which contain at most 2(m+n) vertices altogether. The former bound is tight, the latter is tight up to an additive constant. We also present an optimal O(m+n) time algorithm for computing the bisector.

Given a finite set of points in the plane and a forbidden region R, we want to find a point X not an element of int(R), such that the weighted sum to all given points is minimized. This location problem is a variant of the well-known Weber Problem, where we measure the distance by polyhedral gauges and allow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may be any convex polyhedron containing the origin. This large class of distance functions allows very general (practical) settings - such as asymmetry - to be modeled. Each given point is allowed to have its own gauge and the forbidden region R enables us to include negative information in the model. Additionally the use of negative and positive weights allows to include the level of attraction or dislikeness of a new facility. Polynomial algorithms and structural properties for this global optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial and geometrical methods are presented.

There are several good reasons to introduce classification schemes for optimization problems including, for instance, the ability for concise problem statement opposed to verbal, often ambiguous, descriptions or simple data encoding and information retrieval in bibliographical information systems or software libraries. In some branches like scheduling and queuing theory classification is therefore a widely accepted and appreciated tool. The aim of this paper is to propose a 5-position classification which can be used to cover all location problems. We will provide a list of currentliy available symbols and indicate its usefulness in a - necessarily non-comprehensive - list of classical location problems. The classification scheme is in use since 1992 and has since proved to be useful in research, software development, classroom, and for overview articles.