### Refine

#### Year of publication

- 2000 (16) (remove)

Abstract: The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspondence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable phase of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is significant for quantum phase interference is discovered with the quantum theory of spin systems besides the known phase obtained with the semiclassical treatment of spin. We also show the energy dependence of the effect and obtain the tunneling splitting at excited states with the help of periodic instantons.

Abstract: The transition from the quantum to the classical regime of the nucleation of the closed Robertson-Walker Universe with spacially homogeneous matter fields is investigated with a perturbation expansion around the sphaleron configuration. A criterion is derived for the occurrence of a first-order type transition, and the related phase diagram for scalar and vector fields is obtained. For scalar fields both the first and second order transitions can occur depending on the shape of the potential barrier. For a vector field, here that of an O (3) nonlinear o-model, the transition is seen to be only of the first order. PACS numbers: 11.15.Kc, 03.65Sq, 05.70.Fh, 98.80.Cq

Abstract: It has recently been shown that the equation of motion of a massless scalar field in the background of some specific p branes can be reduced to a modified Mathieu equation. In the following the absorption rate of the scalar by a D3 brane in ten dimensions is calculated in terms of modified Mathieu functions of the first kind, using standard Mathieu coefficients. The relation of the latter to Dougall coefficients (used by others) is investigated. The S-matrix obtained in terms of modified Mathieu functions of the first kind is easily evaluated if known rapidly convergent low energy expansions of these in terms of products of Bessel functions are used. Leading order terms, including the interesting logarithmic contributions, can be obtained analytically.

Abstract: The self-duality of chiral p-forms was originally investigated by Pasti, Sorokin and Tonin in a manifestly Lorentz covariant action with non-polynomial auxiliary fields. The investigation was then extended to other chiral p-form actions. In this paper we point out that the self-duality appears in a wider context of theoretical models that relate to chiral p-forms. We demonstrate this by considering the interacting model of Floreanini- Jackiw chiral bosons and gauge fields, the generalized chiral Schwinger model (GCSM) and the latter's gauge invariant formulation, and discover that the self-duality of the GCSM corresponds to the vector and axial vector current duality.

Abstract: The duality symmetries of various chiral boson actions are investigated using D = 2 and D = 6 space-time dimensions as examples. These actions involve the Siegel, Floreanini-Jackiw, Srivastava and Pasti-Sorokin-Tonin formulations. We discover that the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin actions have self-duality with respect to a common anti-dualization of chiral boson fields in D = 2 and D = 6 dimensions, respectively, while the Srivastava action is self-dual with respect to a generalized dualization of chiral boson fields. Moreover, the action of the Floreanini-Jackiw chiral bosons interacting with gauge fields in D = 2 dimensions also has self-duality but with respect to a generalized anti-dualization of chiral boson fields.

Abstact. The tunnel splitting in biaxial antiferromagnetic particles is studied with a magnetic field applied along the hard anisotropy axis. We observe the oscillation of tunnel splitting as a function of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings. The oscillation is similar to the recent experimental result with Fe8 molecular clusters.

Abstract: The calculation of absorption cross sections for minimal scalars in supergravity backgrounds is an important aspect of the investigation of AdS/CFT correspondence and requires a matching of appropriate wave functions. The low energy case has attracted particular attention. In the following the dependence of the cross section on the matching point is investigated. It is shown that the low energy limit is independent of the matching point and hence exhibits universality. In the high energy limit the independence is not maintained, but the result is believed to possess the correct energy dependence.

Abstract: The transition from the instanton-dominated quantum regime to the sphaleron-dominated classical regime is studied in the d = 2 abelian-Higgs model when the spatial coordinate is compactified to S1. Contrary to the noncompactified case, this model allows both sharp first-order and smooth second-order transitions depending on the size of the circle. This finding may make the model a useful toy model for the analysis of baryon number violating processes.

Abstract: The functional relation between interquark potential and interquark distance is explicitly derived by considering the Nambu-Goto action in the AdS5 X S 5 background. It is also shown that a similar relation holds in a general background. The implications of this relation for confinement are briefly discussed.

Abstract: Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the winding number transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.

Abstract: Winding number transitions from quantum to classical behavior are studied in the case of the 1+1 dimensional Mottola-Wipf model with the space coordinate on a circle for exploring the possibility of obtaining transitions of second order. The model is also studied as a prototype theory which demonstrates the procedure of such investigations. In the model at hand we find that even on a circle the transitions remain those of first order.

Abstract: A Born-Infeld theory describing a D2-brane coupled to a 4-form RR field strength is considered, and the general solutions of the static and Euclidean time equations are derived and discussed. The period of the bounce solutions is shown to allow a consideration of tunneling and quantum-classical transitions in the sphaleron region. The order of such transitions, depending on the strength of the RR field strength, is determined. A criterion is then derived to confirm these findings.

Abstract: Standard methods of nonlinear dynamics are used to investigate the stability of particles, branes and D-branes of abelian Born-Infeld theory. In particular the equation of small fluctuations about the D-brane is derived and converted into a modified Mathieu equation and - complementing earlier low-energy investigations in the case of the dilaton-axion system - studied in the high-energy domain. Explicit expressions are derived for the S-matrix and absorption and reflection amplitudes of the scalar fluctuation in the presence of the D-brane. The results confirm physical expectations and numerical studies of others. With the derivation and use of the (hitherto practically unknown) high energy expansion of the Floquet exponent our considerations also close a gap in earlier treatments of the Mathieu equation.

A pure Yang-Mills theory extended by addition of a quartic term is considered in order to study the transition from the quantum tunneling regime to that of classical, i.e. thermal, behaviour. The periodic field confiurations are found, which interpolate between the vacuum and sphaleron field configurations. It is shown by explicit calculation that only smooth second order transitions occur for all permissible values of the parameter A introduced with the quartic term. The theory is one of the rare cases which canbe handled analytically.

A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein con- densates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.