### Refine

#### Keywords

A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein con- densates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.

A pure Yang-Mills theory extended by addition of a quartic term is considered in order to study the transition from the quantum tunneling regime to that of classical, i.e. thermal, behaviour. The periodic field confiurations are found, which interpolate between the vacuum and sphaleron field configurations. It is shown by explicit calculation that only smooth second order transitions occur for all permissible values of the parameter A introduced with the quartic term. The theory is one of the rare cases which canbe handled analytically.

Abstract: Standard methods of nonlinear dynamics are used to investigate the stability of particles, branes and D-branes of abelian Born-Infeld theory. In particular the equation of small fluctuations about the D-brane is derived and converted into a modified Mathieu equation and - complementing earlier low-energy investigations in the case of the dilaton-axion system - studied in the high-energy domain. Explicit expressions are derived for the S-matrix and absorption and reflection amplitudes of the scalar fluctuation in the presence of the D-brane. The results confirm physical expectations and numerical studies of others. With the derivation and use of the (hitherto practically unknown) high energy expansion of the Floquet exponent our considerations also close a gap in earlier treatments of the Mathieu equation.

Abstract: A Born-Infeld theory describing a D2-brane coupled to a 4-form RR field strength is considered, and the general solutions of the static and Euclidean time equations are derived and discussed. The period of the bounce solutions is shown to allow a consideration of tunneling and quantum-classical transitions in the sphaleron region. The order of such transitions, depending on the strength of the RR field strength, is determined. A criterion is then derived to confirm these findings.

Abstract: Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the winding number transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.

Abstract: Winding number transitions from quantum to classical behavior are studied in the case of the 1+1 dimensional Mottola-Wipf model with the space coordinate on a circle for exploring the possibility of obtaining transitions of second order. The model is also studied as a prototype theory which demonstrates the procedure of such investigations. In the model at hand we find that even on a circle the transitions remain those of first order.

Abstract: The functional relation between interquark potential and interquark distance is explicitly derived by considering the Nambu-Goto action in the AdS5 X S 5 background. It is also shown that a similar relation holds in a general background. The implications of this relation for confinement are briefly discussed.