### Refine

Bulk-boundary correspondence in non-equilibrium dynamics of one-dimensional topological insulators
(2017)

Dynamical phase transitions (DPT) are receiving a rising interest. They are known to behave analogously to
equilibrium phase transitions (EPT) to a large extend. However, it is easy to see that DPT can occur in finite
systems, while EPT are only possible in the thermodynamic limit. So far it is not clear how far the analogy of
DPT and EPT goes. It was suggested, that there is a relation between topological phase transitions (TPT)
and DPT, but many open questions remain.
Typically, to study DPT, the Loschmidt echo (LE) after a quench is investigated, where DPT are visible as
singularities. For one-dimensional systems, each singularity is connected to a certain critical time scale, which
is given by the dispersion in the chain.
In topological free-fermion models with winding numbers 0 or 1, only the LE in periodic boundary conditions
(PBC) has been investigated. In open boundary conditions (OBC), these models are characterized by symmetry
protected edge modes in the topologically non-trivial phase. It is completely unclear how these modes affect
DPT. We investigate systems with PBC governed by multiple time scales with a Z topological invariant. In
OBC, we provide numerical evidence for the presence of bulk-boundary correspondence in DPT in quenches
across a TPT.