### Refine

#### Year of publication

#### Document Type

- Preprint (39)
- Report (2)
- Working Paper (1)

#### Keywords

- Mehrskalenanalyse (3)
- Decomposition and Reconstruction Schemes (2)
- Kugel (2)
- Kugelflächenfunktion (2)
- Spherical Wavelets (2)
- Sphäre (2)
- Up Functions (2)
- Wavelet (2)
- Wavelet-Analyse (2)
- uniqueness (2)
- Abgeschlossenheit (1)
- Approximation (1)
- Bernstein Kern (1)
- Bernstejn-Polynom (1)
- Biorthogonalisation (1)
- CHAMP-Mission (1)
- Cauchy-Navier equation (1)
- Cauchy-Navier-Gleichung (1)
- Dirichlet-Problem (1)
- Dynamische Topographie (1)
- Earth' (1)
- Earth's disturbing potential (1)
- Elastische Deformation (1)
- Fast Pseudo Spectral Algorithm (1)
- Fast Wavelet Transform (1)
- GPS-satellite-to-satellite tracking (1)
- GRACE (1)
- Galerkin-Methode (1)
- Geodäsie (1)
- Geodätischer Satellit (1)
- Geostrophic flow (1)
- Globale nichtlineare Analysis (1)
- Gravitation (1)
- Gravitational Field (1)
- Gravitationsfeld (1)
- Helmholtz decomposition (1)
- Hydrological Gravity Variations (1)
- Hydrologie (1)
- Incompressible Navier-Stokes (1)
- Inkompressibel Navier-Stokes (1)
- Inverses Problem (1)
- Konstruktive Approximation (1)
- Locally Supported Radial Basis Functions (1)
- Lokalkompakte Kerne (1)
- Mathematische Modellierung (1)
- Mie representation (1)
- Molodensky Problem (1)
- Molodensky problem (1)
- Multiresolution Analysis (1)
- Multiskalenapproximation (1)
- Multisresolution Analysis (1)
- Navier-Stokes-Gleichung (1)
- Neumann Wavelets (1)
- Neumann wavelets (1)
- Neumann-Problem (1)
- Nichtlineares Galerkinverfahren (1)
- Nonlinear Galerkin Method (1)
- Orthonormalbasis (1)
- Panel clustering (1)
- Regularisierung (1)
- Schnelle Fourier-Transformation (1)
- Skalierungsfunktion (1)
- Spherical (1)
- Spherical Multiresolution Analysis (1)
- Sphärische Wavelets (1)
- Stokes Wavelets (1)
- Stokes wavelets (1)
- Tensor Spherical Harmonics (1)
- Tensorfeld (1)
- Tiefengeothermie (1)
- Unschärferelation (1)
- Vector Spherical Harmonics (1)
- Vektorfeld (1)
- Vollständigkeit (1)
- Wavelet Analysis auf regulären Flächen (1)
- Wavelets (1)
- Zeitliche Veränderungen (1)
- Zonal Kernel Functions (1)
- approximation methods (1)
- arbitrary function (1)
- clo (1)
- compact operator equation (1)
- constructive approximation (1)
- da (1)
- deflections of the vertical (1)
- dynamical topography (1)
- exact fully discrete vectorial wavelet transform (1)
- formulation as integral equation (1)
- fundamental systems (1)
- geodetic (1)
- geomagnetic field modelling from MAGSAT data (1)
- geopotential determination (1)
- harmonic WFT (1)
- harmonic scaling functions and wavelets (1)
- inverse Fourier transform (1)
- local approximation of sea surface topography (1)
- local multiscale (1)
- locally compact kernels (1)
- locally supported (Green's) vector wavelets (1)
- locally supported (Green’s) vector wavelets (1)
- multiresolution analysis (1)
- multiscale approximation (1)
- multiscale approximation on regular telluroidal surfaces (1)
- mutiresolution (1)
- numerical integration (1)
- pyramid scheme (1)
- regularization by wavelets (1)
- regularization wavelets (1)
- s external gravitational field (1)
- satellite gravity gradiometry (1)
- satellite-to-satellite tracking (1)
- scale discrete spherical vector wavelets (1)
- spline and wavelet based determination of the geoid and the gravitational potential (1)
- squares (1)
- trial systems (1)
- uncertainty principle (1)
- vector wavelets (1)
- vectorial multiresolution analysis (1)
- wavelet transform (1)
- windowed Fourier transform (1)

In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

Spline functions that interpolate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A pointwise convergence theorem containing explicit constants yields a useable error bound.

Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.

A concept of generalized discrepancy, which involves pseudodifferential operators to give a criterion of equidistributed pointsets, is developed on the sphere. A simply structured formula in terms of elementary functions is established for the computation of the generalized discrepancy. With the help of this formula five kinds of point systems on the sphere, namely lattices in polar coordinates, transformed 2-dimensional sequences, rotations on the sphere, triangulation, and sum of three squares sequence, are investigated. Quantitative tests are done, and the results are compared with each other. Our calculations exhibit different orders of convergence of the generalized discrepancy for different types of point systems.

The basic theory of spherical singular integrals is recapitulated. Criteria are given for measuring the space-frequency localization of functions on the sphere. The trade off between space localization on the sphere and frequency localization in terms of spherical harmonics is described in form of an uncertainty principle. A continuous version of spherical multiresolution is introduced, starting from continuous wavelet transform corresponding to spherical wavelets with vanishing moments up to a certain order. The wavelet transform is characterized by least-squares properties. Scale discretization enables us to construct spherical counterparts of wavelet packets and scale discrete Daubechies" wavelets. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to pyramyd algorithms. Fully discretized wavelet transforms are obtained via approximate integration rules on the sphere. Finally applications to (geo-)physical reality are discussed in more detail. A combined method is proposed for approximating the low frequency parts of a physical quantity by spherical harmonics and the high frequency parts by spherical wavelets. The particular significance of this combined concept is motivated for the situation of today" s physical geodesy, viz. the determination of the high frequency parts of the earth" s gravitational potential under explicit knowledge of the lower order part in terms of a spherical harmonic expansion.

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.

The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.

A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

The paper discusses the approximation of scattered data on the sphere which is one of the major tasks in geomathematics. Starting from the discretization of singular integrals on the sphere the authors devise a simple approximation method that employs locally supported spherical polynomials and does not require equidistributed grids. It is the basis for a hierarchical approximation algorithm using differently scaled basis functions, adaptivity and error control. The method is applied to two examples one of which is a digital terrain model of Australia.

Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a continuous problem of harmonic downward continuation. The space-borne gravity gradients are assumed to be known continuously over the satellite (orbit) surface. Our purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. It is shown that, in a spherical context, uniqueness results are obtainable by decomposition of the Hesse matrix in terms of tensor spherical harmonics. In particular, the gravitational potential is proved to be uniquely determined if second order radial derivatives are prescribed at satellite height. This information leads us to a reformulation of satellite gradiometry as a (Fredholm) pseudodifferential equation of first kind. Secondly, for a numerical realization, we assume the gravitational gradients to be known for a finite number of discrete points. The discrete problem is dealt with classical regularization methods, based on filtering techniques by means of spherical wavelets. A spherical singular integral-like approach to regularization methods is established, regularization wavelets are developed which allow the regularization in form of a multiresolution analysis. Moreover, a combined spherical harmonic and spherical regularization wavelet solution is derived as an appropriate tool in future (global and local) high-presision resolution of the earth" s gravitational potential.

Based on a new definition of delation a scale discrete version of spherical multiresolution is described, starting from a scale discrete wavelet transform on the sphere. Depending on the type of application, different families of wavelets are chosen. In particular, spherical Shannon wavelets are constructed that form an orthogonal multiresolution analysis. Finally fully discrete wavelet approximation is discussed in case of band-limited wavelets.

In modern approximation methods linear combinations in terms of (space localizing) radial basis functions play an essential role. Areas of application are numerical integration formulas on the uni sphere omega corresponding to prescribed nodes, spherical spline interpolation, and spherical wavelet approximation. the evaluation of such a linear combination is a time consuming task, since a certain number of summations, multiplications and the calculation of scalar products are required. This paper presents a generalization of the panel clustering method in a spherical setup. The economy and efficiency of panel clustering is demonstrated for three fields of interest, namely upward continuation of the earth's gravitational potential, geoid computation by spherical splines and wavelet reconstruction of the gravitational potential.

Many problems arising in (geo)physics and technology can be formulated as compact operator equations of the first kind \(A F = G\). Due to the ill-posedness of the equation a variety of regularization methods are in discussion for an approximate solution, where particular emphasize must be put on balancing the data and the approximation error. In doing so one is interested in optimal parameter choice strategies. In this paper our interest lies in an efficient algorithmic realization of a special class of regularization methods. More precisely, we implement regularization methods based on filtered singular value decomposition as a wavelet analysis. This enables us to perform, e.g., Tikhonov-Philips regularization as multiresolution. In other words, we are able to pass over from one regularized solution to another one by adding or subtracting so-called detail information in terms of wavelets. It is shown that regularization wavelets as proposed here are efficiently applicable to a future problem in satellite geodesy, viz. satellite gravity gradiometry.

Metaharmonic wavelets are introduced for constructing the solution of theHelmholtz equation (reduced wave equation) corresponding to Dirichlet's orNeumann's boundary values on a closed surface approach leading to exactreconstruction formulas is considered in more detail. A scale discrete version ofmultiresolution is described for potential functions metaharmonic outside theclosed surface and satisfying the radiation condition at infinity. Moreover, wediscuss fully discrete wavelet representations of band-limited metaharmonicpotentials. Finally, a decomposition and reconstruction (pyramid) scheme foreconomical numerical implementation is presented for Runge-Walsh waveletapproximation.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.

The purpose of GPS-satellite-to-satellite tracking (GPS-SST) is to determine the gravitational potential at the earth's surface from measured ranges (geometrical distances) between a low-flying satellite and the high-flying satellites of the Global Posittioning System (GPS). In this paper GPS-satellite-to-satellite tracking is reformulated as the problem of determining the gravitational potential of the earth from given gradients at satellite altitude. Uniqueness and stability of the solution are investigated. The essential tool is to split the gradient field into a normal part (i.e. the first order radial derivative) and a tangential part (i.e. the surface gradient). Uniqueness is proved for polar, circular orbits corresponding to both types of data (first radial derivative and/or surface gradient). In both cases gravity recovery based on satellite-to-satellite tracking turns out to be an exponentially ill-posed problem. As an appropriate solution method regularization in terms of spherical wavelets is proposed based on the knowledge of the singular system. Finally, the extension of this method is generalized to a non-spherical earth and a non-spherical orbital surface based on combined terrestrial and satellite data material.

A General Hilbert Space Approach to Wavelets and Its Application in Geopotential Determination
(1999)

A general approach to wavelets is presented within a framework of a separable functional Hilbert space H. Basic tool is the construction of H-product kernels by use of Fourier analysis with respect to an orthonormal basis in H. Scaling function and wavelet are defined in terms of H-product kernels. Wavelets are shown to be 'building blocks' that decorrelate the data. A pyramid scheme provides fast computation. Finally, the determination of the earth's gravitational potential from single and multipole expressions is organized as an example of wavelet approximation in Hilbert space structure.

This review article reports current activities and recent progress on constructive approximation and numerical analysis in physical geodesy. The paper focuses on two major topics of interest, namely trial systems for purposes of global and local approximation and methods for adequate geodetic application. A fundamental tool is an uncertainty principle, which gives appropriate bounds for the quantification of space and momentum localization of trial functions. The essential outcome is a better understanding of constructive approximation in terms of radial basis functions such as splines and wavelets.

Two possible substitutes of the Fourier transform in geopotential determination are windowed Fourier transform (WFT) and wavelet transform (WT). In this paper we introduce harmonic WFT and WT and show how it can be used to give information about the geopotential simultaneously in the space domain and the frequency (angular momentum) domain. The counterparts of the inverse Fourier transform are derived, which allow us to reconstruct the geopotential from its WFT and WT, respectively. Moreover, we derive a necessary and sufficient condition that an otherwise arbitrary function of space and frequency has to satisfy to be the WFT or WT of a potential. Finally, least - squares approximation and minimum norm (i.e. least - energy) representation, which will play a particular role in geodetic applications of both WFT and WT, are discussed in more detail.

A multiscale method is introduced using spherical (vector) wavelets for the computation of the earth's magnetic field within source regions of ionospheric and magnetospheric currents. The considerations are essentially based on two geomathematical keystones, namely (i) the Mie representation of solenoidal vector fields in terms of toroidal and poloidal parts and (ii) the Helmholtz decomposition of spherical (tangential) vector fields. Vector wavelets are shown to provide adequate tools for multiscale geomagnetic modelling in form of a multiresolution analysis, thereby completely circumventing the numerical obstacles caused by vector spherical harmonics. The applicability and efficiency of the multiresolution technique is tested with real satellite data.

The satellite-to-satellite tracking (SST) problems are characterized from mathematical point of view. Uniqueness results are formulated. Moreover, the basic relations are developed between (scalar) approximation of the earth's gravitational potential by "scalar basis systems" and (vectorial) approximation of the gravitational eld by "vectorial basis systems". Finally, the mathematical justication is given for approximating the external geopotential field by finite linear combinations of certain gradient fields (for example, gradient fields of multi-poles) consistent to a given set of SST data.

Being interested in (rotation-)invariant pseudodi erential equations of satellite problems corresponding to spherical orbits, we are reasonably led to generating kernels that depend only on the spherical distance, i. e. in the language of modern constructive approximation form spherical radial basis functions. In this paper approximate identities generated by such (rotation-invariant) kernels which are additionally locally supported are investigated in detail from theoretical as well as numerical point of view. So-called spherical di erence wavelets are introduced. The wavelet transforms are evaluated by the use of a numerical integration rule, that is based on Weyl's law of equidistribution. This approximate formula is constructed such that it can cope with millions of (satellite) data. The approximation error is estimated on the orbital sphere. Finally, we apply the developed theory to the problems of satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG).

The purpose of satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry (SGG) is to determine the gravitational field on and outside the Earth's surface from given gradients of the gravitational potential and/or the gravitational field at satellite altitude. In this paper both satellite techniques are analysed and characterized from mathematical point of view. Uniqueness results are formulated. The justification is given for approximating the external gravitational field by finite linear combination of certain gradient fields (for example, gradient fields of single-poles or multi-poles) consistent to a given set of SGG and/or SST data. A strategy of modelling the gravitational field from satellite data within a multiscale concept is described; illustrations based on the EGM96 model are given.

Die Bestimmung des Erdgravitationspotentials aus den Meßdaten des Forschungssatelliten CHAMP lässt sich als Operatorgleichung formulieren (SST-Problem). Dieser Ansatz geht davon aus, dass ein geometrischer Orbit des Satelliten CHAMP vorliegt. Mittels numerischer Differentiation unter Einsatz eines geeigneten Denoising Verfahrens kann dann aus dem geometrischen Orbit der Gradient des Potentials längs der Bahn bestimmt werden. Damit sind insbesondere die Radialableitung (und der Flächengradient) auf einem Punktgitter auf der Bahn bekannt. In einem erdfesten System stellt sich dies als eine nahezu vollständige Überdeckung der Erde (bis auf Polar Gaps) mit einem ziemlich dichten Datengitter auf Flughöhe des Satelliten dar. Die Lösung der SST-Operatorgleichung (Bestimmung des Potentials auf der Erdoberfläche aus Kenntnis der Radialableitung auf einem Datengitter auf Flughöhe) ist ein schlecht gestelltes inverses Problem, das mit einer geeigneten Regularisierungstechnik gelöst werden muß. Im vorliegenden Fall wurde eine solche Regularisierung mit Hilfe von nicht-bandlimitierten Regularisierungsskalierungsfunktionen und Regularisierungswavelets umgesetzt. Diese sind stark ortslokalisierend und führen daher auf ein Potentialmodell, welches eine Linearkombination stark ortslokalisierender Funktionen ist. Ein solches Modell kann als Lokalmodell auch aus nur lokalen Daten berechnet werden und bietet daher gegenüber Kugelfunktionsmodellen wie EGM96 erhebliche Vorteile für die moderne Geopotentialbestimmung. Die Diskretisierung und numerische Umsetzung der Berechnung eines solchen Modells erfolgt mit Splines, die hier ebenfalls Linearkombinationen stark ortslokalisierender Funktionen sind. Die großen linearen Gleichungssysteme, die zur Berechnung der glättenden oder interpolierenden Splines gelöst werden müssen, können auf schnelle und effiziente Weise mit dem Schwarzschen alternierenden Algorithmus in Verbindung mit schnellen Summationsverfahren (Fast Multipole Methods) gelöst werden. Eine Kombination des Schwarzschen alternierenden Algorithmus mit solchen schnellen Summationsverfahren ermöglicht eine weitere erhebliche Beschleunigung beim Lösen dieser Gleichungssysteme. Zur Bestimmung von Glättungsparametern (Spline-Smoothing) und Regularisierungsparametern kann die L-Curve Method zum Einsatz kommen.

A new class of locally supported radial basis functions on the (unit) sphere is introduced by forming an infinite number of convolutions of ''isotropic finite elements''. The resulting up functions show useful properties: They are locally supported and are infinitely often differentiable. The main properties of these kernels are studied in detail. In particular, the development of a multiresolution analysis within the reference space of square--integrable functions over the sphere is given. Altogether, the paper presents a mathematically significant and numerically efficient introduction to multiscale approximation by locally supported radial basis functions on the sphere.

The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.

Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and e±cient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.

This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

Gegenstand dieser Arbeit ist die kanonische Verbindung klassischer globaler Schwerefeldmodellierung in der Konzeption von Stokes (1849) und Neumann (1887) und moderner lokaler Multiskalenberechnung mittels lokalkompakter adaptiver Wavelets. Besonderes Anliegen ist die "Zoom-in"-Ermittlung von Geoidhöhen aus lokal gegebenen Schwereanomalien bzw. Schwerestörungen.

Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource "Geothermie" innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.