### Refine

#### Year of publication

#### Document Type

- Preprint (39)
- Report (2)
- Working Paper (1)

#### Keywords

- Mehrskalenanalyse (3)
- Decomposition and Reconstruction Schemes (2)
- Kugel (2)
- Kugelflächenfunktion (2)
- Spherical Wavelets (2)
- Sphäre (2)
- Up Functions (2)
- Wavelet (2)
- Wavelet-Analyse (2)
- uniqueness (2)

Gegenstand dieser Arbeit ist die kanonische Verbindung klassischer globaler Schwerefeldmodellierung in der Konzeption von Stokes (1849) und Neumann (1887) und moderner lokaler Multiskalenberechnung mittels lokalkompakter adaptiver Wavelets. Besonderes Anliegen ist die "Zoom-in"-Ermittlung von Geoidhöhen aus lokal gegebenen Schwereanomalien bzw. Schwerestörungen.

A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

The basic theory of spherical singular integrals is recapitulated. Criteria are given for measuring the space-frequency localization of functions on the sphere. The trade off between space localization on the sphere and frequency localization in terms of spherical harmonics is described in form of an uncertainty principle. A continuous version of spherical multiresolution is introduced, starting from continuous wavelet transform corresponding to spherical wavelets with vanishing moments up to a certain order. The wavelet transform is characterized by least-squares properties. Scale discretization enables us to construct spherical counterparts of wavelet packets and scale discrete Daubechies" wavelets. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to pyramyd algorithms. Fully discretized wavelet transforms are obtained via approximate integration rules on the sphere. Finally applications to (geo-)physical reality are discussed in more detail. A combined method is proposed for approximating the low frequency parts of a physical quantity by spherical harmonics and the high frequency parts by spherical wavelets. The particular significance of this combined concept is motivated for the situation of today" s physical geodesy, viz. the determination of the high frequency parts of the earth" s gravitational potential under explicit knowledge of the lower order part in terms of a spherical harmonic expansion.

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.

Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.

Based on a new definition of delation a scale discrete version of spherical multiresolution is described, starting from a scale discrete wavelet transform on the sphere. Depending on the type of application, different families of wavelets are chosen. In particular, spherical Shannon wavelets are constructed that form an orthogonal multiresolution analysis. Finally fully discrete wavelet approximation is discussed in case of band-limited wavelets.

Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

A new class of locally supported radial basis functions on the (unit) sphere is introduced by forming an infinite number of convolutions of ''isotropic finite elements''. The resulting up functions show useful properties: They are locally supported and are infinitely often differentiable. The main properties of these kernels are studied in detail. In particular, the development of a multiresolution analysis within the reference space of square--integrable functions over the sphere is given. Altogether, the paper presents a mathematically significant and numerically efficient introduction to multiscale approximation by locally supported radial basis functions on the sphere.

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

Metaharmonic wavelets are introduced for constructing the solution of theHelmholtz equation (reduced wave equation) corresponding to Dirichlet's orNeumann's boundary values on a closed surface approach leading to exactreconstruction formulas is considered in more detail. A scale discrete version ofmultiresolution is described for potential functions metaharmonic outside theclosed surface and satisfying the radiation condition at infinity. Moreover, wediscuss fully discrete wavelet representations of band-limited metaharmonicpotentials. Finally, a decomposition and reconstruction (pyramid) scheme foreconomical numerical implementation is presented for Runge-Walsh waveletapproximation.