### Refine

#### Document Type

- Report (7)

#### Language

- English (7)

#### Has Fulltext

- yes (7)

#### Is part of the Bibliography

- no (7)

#### Faculty / Organisational entity

We study the complexity of local solution of Fredholm integral equations. This means that we want to compute not the full solution, but rather a functional (weighted mean, value in a point) of it. For certain Sobolev classes of multivariate periodic functions we prove matching upper and lower bounds and construct an algorithm of the optimal order, based on Fourier coefficients and a hyperbolic cross approximation.

In this paper the complexity of the local solution of Fredholm integral equations
is studied. For certain Sobolev classes of multivariate periodic functions with dominating mixed derivative we prove matching lower and upper bounds. The lower bound is shown using relations to s-numbers. The upper bound is proved in a constructive way providing an implementable algorithm of optimal order based on Fourier coefficients and a hyperbolic cross approximation.

In recent years, Smolyak quadrature rules (also called hyperbolic cross points or sparse grids) have gained interest as a possible competitor to number theoretic quadratures for high dimensional problems. A standard way of comparing the quality of multivariate quadrature formulas
consists in computing their \(L_2\)-discrepancy. Especially for larger dimensions, such computations are a highly complex task. In this paper we develop a fast recursive algorithm for computing the \(L_2\)-discrepancy (and related quality measures) of general Smolyak quadratures. We carry out numerical comparisons between the discrepancies of certain Smolyak rules, Hammersley and Monte Carlo sequences.

A notion of discrepancy is introduced, which represents the integration error on spaces of \(r\)-smooth periodic functions. It generalizes the diaphony and constitutes a periodic counterpart to the classical \(L_2\)-discrepancy as weil as \(r\)-smooth versions of it introduced recently by Paskov [Pas93]. Based on previous work [FH96], we develop an efficient algorithm for computing periodic discrepancies for quadrature formulas possessing certain tensor product structures, in particular, for Smolyak quadrature rules (also called sparse grid methods). Furthermore, fast algorithms of computing periodic discrepancies for lattice rules can easily be derived from well-known properties of lattices. On this basis we carry out numerical comparisons of discrepancies between Smolyak and lattice rules.

The local solution problem of multivariate Fredholm integral equations is studied. Recent research proved that for several function classes the complexity of this problem is closely related to the Gelfand numbers of some characterizing operators. The generalization of this approach to the situation of arbitrary Banach spaces is the subject of the present paper.
Furthermore, an iterative algorithm is described which - under some additional conditions - realizes the optimal error rate. The way these general theorems work is demonstrated by applying them to integral equations in a Sobolev space of periodic functions with dominating mixed derivative of various order.

In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.