Filtern
Erscheinungsjahr
Dokumenttyp
- Preprint (30)
- Teil eines Periodikums (19)
- Wissenschaftlicher Artikel (11)
Sprache
- Englisch (60) (entfernen)
Schlagworte
- Annual Report 2011 (2012)
- Annual Report 2009 (2010)
- Annual Report 2008 (2009)
- Annual Report 2007 (2008)
- Annual Report 2005 (2006)
- Annual Report 2003 (2004)
-
Enhanced coercivity of exchange-biased Fe/MnPd bilayers (1999)
- We present detailed studies of the enhanced coercivity of exchange-bias bilayer Fe/MnPd, both experimentally and theoretically. We have demonstrated that the existence of large higher-order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness are well explained by a phenomenological model by introducing higher-order anisotropy terms into the total free energy of the system.
-
Anisotropic magnetic coupling of permalloy micron dots forming a square lattice (1997)
- Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.
-
Static and dynamic properties of patterned magnetic permalloy films (1997)
- Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.
-
Brillouin light scattering from quantized spin waves in micron-size magnetic wires (1999)
- An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 wires by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin wave modes laterally quantized in a single wire with quantized wavevector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wavevector interval, where each mode is observed, is calculated using a light scattering theory for confined geometries. The frequen-cies of the modes are calculated, taking into account finite size effects. The results of the calculations are in a good agreement with the experimental data.