### Filtern

#### Sprache

- Englisch (6) (entfernen)

#### Schlagworte

- Delaunay Triangulation (1)
- Delaunay mesh generation (1)
- Domain Decomposition (1)
- FETI (1)
- Grid Generation (1)
- Load Balancing (1)
- Neumann problem (1)
- Parallel Programming (1)
- Unstructured Grid (1)
- a posteriori error estimates (1)

This report discusses two approaches for a posteriori error indication in the linear elasticity solver DDFEM: An indicator based on the Richardson extrapolation and Zienkiewicz-Zhu-type indicator. The solver handles 3D linear elasticity steady-state problems. It uses own input language to describe the mesh and the boundary conditions. Finite element discretization over tetrahedral meshes with first or second order shape functions (hierarchical basis) has been used to resolve the model. The parallelization of the numerical method is based on the domain decomposition approach. DDFEM is highly portable over a set of parallel computer architectures supporting the MPI-standard.

In this paper, the analysis of one approach for the regularization of pure Neumann problems for second order elliptical equations, e.g., Poisson’s equation and linear elasticity equations, is presented. The main topic under consideration is the behavior of the condition number of the regularized problem. A general framework for the analysis is presented. This allows to determine a form of regularization term which leads to the “natural” asymptotic of the condition number of the regularized problem with respect to mesh parameter. Some numerical results, which support theoretical analysis are presented as well. The main motivation for the presented research is to develop theoretical background for an efficient and robust implementation of the solver for pure Neumann problems for the linear elasticity equations. Such solvers usually are needed in a number of domain decomposition methods, e.g. FETI. Developed approaches are planed to be used in software, developing in ITWM, e.g. KneeMech simulation software.

An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered.

The desire to simulate more and more geometrical and physical features of technical structures and the availability of parallel computers and parallel numerical solvers which can exploit the power of these machines have lead to a steady increase in the number of grid elements used. Memory requirements and computational time are too large for usual serial PCs. An a priori partitioning algorithm for the parallel generation of 3D nonoverlapping compatible unstructured meshes based on a CAD surface description is presented in this paper. Emphasis is given to practical issues and implementation rather than to theoretical complexity. To achieve robustness of the algorithm with respect to the geometrical shape of the structure authors propose to have several or many but relatively simple algorithmic steps. The geometrical domain decomposition approach has been applied. It allows us to use classic 2D and 3D high-quality Delaunay mesh generators for independent and simultaneous volume meshing. Different aspects of load balancing methods are also explored in the paper. The MPI library and SPMD model are used for parallel grid generator implementation. Several 3D examples are shown.

The level-set method has been recently introduced in the field of shape optimization, enabling a smooth representation of the boundaries on a fixed mesh and therefore leading to fast numerical algorithms. However, most of these algorithms use a Hamilton-Jacobi equation to connect the evolution of the level-set function with the deformation of the contours, and consequently they cannot create any new holes in the domain (at least in 2D). In this work, we propose an evolution equation for the level-set function based on a generalization of the concept of topological gradient. This results in a new algorithm allowing for all kinds of topology changes.

In this work we extend the multiscale finite element method (MsFEM)
as formulated by Hou and Wu in [14] to the PDE system of linear elasticity.
The application, motivated from the multiscale analysis of highly heterogeneous
composite materials, is twofold. Resolving the heterogeneities on
the finest scale, we utilize the linear MsFEM basis for the construction of
robust coarse spaces in the context of two-level overlapping Domain Decomposition
preconditioners. We motivate and explain the construction
and present numerical results validating the approach. Under the assumption
that the material jumps are isolated, that is they occur only in the
interior of the coarse grid elements, our experiments show uniform convergence
rates independent of the contrast in the Young's modulus within the
heterogeneous material. Elsewise, if no restrictions on the position of the
high coefficient inclusions are imposed, robustness can not be guaranteed
any more. These results justify expectations to obtain coefficient-explicit
condition number bounds for the PDE system of linear elasticity similar to
existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner
and Scheichl [12]. Furthermore, we numerically observe the properties
of the MsFEM coarse space for linear elasticity in an upscaling framework.
Therefore, we present experimental results showing the approximation errors
of the multiscale coarse space w.r.t. the fine-scale solution.