### Refine

#### Year of publication

- 2007 (27) (remove)

#### Language

- English (27) (remove)

#### Keywords

- numerical upscaling (4)
- Darcy’s law (2)
- effective heat conductivity (2)
- single phase flow (2)
- 3D (1)
- Asymptotic Expansion (1)
- Bayesian Model Averaging (1)
- Boolean polynomials (1)
- Boundary Value Problem (1)
- CIR model (1)
- Delaunay mesh generation (1)
- Existence of Solutions (1)
- Facility location (1)
- Fault Prediction (1)
- Fokker-Planck Equation (1)
- Gröber basis (1)
- IMRT planning (1)
- Integer programming (1)
- Multipoint flux approximation (1)
- Multiscale problem (1)
- Multiscale problems (1)
- Navier-Stokes-Brinkmann system of equations (1)
- Network design (1)
- Non-homogeneous Poisson Process (1)
- Ornstein-Uhlenbeck Process (1)
- Reliability Prediction (1)
- Rotational Fiber Spinning (1)
- Slender body theory (1)
- Stochastic Differential Equations (1)
- Supply Chain Management (1)
- Vasicek model (1)
- Viscous Fibers (1)
- a-priori domain decomposition (1)
- algebraic cryptoanalysis (1)
- algorithm by Bortfeld and Boyer (1)
- anisotropy (1)
- big triangle small triangle method (1)
- binarization (1)
- bounds (1)
- computational fluid dynamics (1)
- convex (1)
- convex optimization (1)
- curved viscous fibers with surface tension (1)
- decomposition (1)
- defect detection (1)
- discontinuous coefficients (1)
- discriminant analysis (1)
- domain decomposition (1)
- elliptic equation (1)
- fibrous insulation materials (1)
- filtration (1)
- finite volume method (1)
- finite-volume method (1)
- formal verification (1)
- free boundary value problem (1)
- functional Hilbert space (1)
- global optimization (1)
- heterogeneous porous media (1)
- heuristic (1)
- hub location (1)
- image processing (1)
- image segmentation (1)
- intensity maps (1)
- intensity modulated radiotherapy planning (1)
- interactive multi-objective optimization (1)
- kernel estimate (1)
- kernel function (1)
- metal foams (1)
- multigrid (1)
- multiscale problem (1)
- non-linear optimization (1)
- non-overlapping constraints (1)
- ordered median (1)
- oscillating coefficients (1)
- paper machine (1)
- permeability of fractured porous media (1)
- planar location (1)
- porous media (1)
- preconditioner (1)
- rectangular packing (1)
- regularization (1)
- reproducing kernel (1)
- satisfiability (1)
- sequences (1)
- smoothness (1)
- textile quality control (1)
- texture classification (1)
- transportation (1)
- two-grid algorithm (1)
- unstructured grid (1)
- wild bootstrap test (1)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (27) (remove)

In this paper, a stochastic model [5] for the turbulent fiber laydown in the industrial production of nonwoven materials is extended by including a moving conveyor belt. In the hydrodynamic limit corresponding to large noise values, the transient and stationary joint probability distributions are determined using the method of multiple scales and the Chapman-Enskog method. Moreover, exponential convergence towards the stationary solution is proven for the reduced problem. For special choices of the industrial parameters, the stochastic limit process is an Ornstein{Uhlenbeck. It is a good approximation of the fiber motion even for moderate noise values. Moreover, as shown by Monte{Carlo simulations, the limiting process can be used to assess the quality of nonwoven materials in the industrial application by determining distributions of functionals of the process.

Abstract — Various advanced two-level iterative methods are studied numerically and compared with each other in conjunction with finite volume discretizations of symmetric 1-D elliptic problems with highly oscillatory discontinuous coefficients. Some of the methods considered rely on the homogenization approach for deriving the coarse grid operator. This approach is considered here as an alternative to the well-known Galerkin approach for deriving coarse grid operators. Different intergrid transfer operators are studied, primary consideration being given to the use of the so-called problemdependent prolongation. The two-grid methods considered are used as both solvers and preconditioners for the Conjugate Gradient method. The recent approaches, such as the hybrid domain decomposition method introduced by Vassilevski and the globallocal iterative procedure proposed by Durlofsky et al. are also discussed. A two-level method converging in one iteration in the case where the right-hand side is only a function of the coarse variable is introduced and discussed. Such a fast convergence for problems with discontinuous coefficients arbitrarily varying on the fine scale is achieved by a problem-dependent selection of the coarse grid combined with problem-dependent prolongation on a dual grid. The results of the numerical experiments are presented to illustrate the performance of the studied approaches.

An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered.

It has been empirically verified that smoother intensity maps can be expected to produce shorter sequences when step-and-shoot collimation is the method of choice. This work studies the length of sequences obtained by the sequencing algorithm by Bortfeld and Boyer using a probabilistic approach. The results of this work build a theoretical foundation for the up to now only empirically validated fact that if smoothness of intensity maps is considered during their calculation, the solutions can be expected to be more easily applied.

Abstract. The stationary, isothermal rotational spinning process of fibers is considered. The investigations are concerned with the case of large Reynolds (± = 3/Re ¿ 1) and small Rossby numbers (\\\" ¿ 1). Modelling the fibers as a Newtonian fluid and applying slender body approximations, the process is described by a two–point boundary value problem of ODEs. The involved quantities are the coordinates of the fiber’s centerline, the fluid velocity and viscous stress. The inviscid case ± = 0 is discussed as a reference case. For the viscous case ± > 0 numerical simulations are carried out. Transfering some properties of the inviscid limit to the viscous case, analytical bounds for the initial viscous stress of the fiber are obtained. A good agreement with the numerical results is found. These bounds give strong evidence, that for ± > 3\\\"2 no physical relevant solution can exist. A possible interpretation of the above coupling of ± and \\\" related to the die–swell phenomenon is given.

In this paper we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

In this expository article, we give an introduction into the basics of bootstrap tests in general. We discuss the residual-based and the wild bootstrap for regression models suitable for applications in signal and image analysis. As an illustration of the general idea, we consider a particular test for detecting differences between two noisy signals or images which also works for noise with variable variance. The test statistic is essentially the integrated squared difference between the signals after denoising them by local smoothing. Determining its quantile, which marks the boundary between accepting and rejecting the hypothesis of equal signals, is hardly possible by standard asymptotic methods whereas the bootstrap works well. Applied to the rows and columns of images, the resulting algorithm not only allows for the detection of defects but also for the characterization of their location and shape in surface inspection problems.