### Refine

#### Year of publication

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Mathematik (28)
- Fraunhofer (ITWM) (1)

This paper contains the basic ideas and practical aspects for numerical methods for solving the Boltzmann Equation. The main field of application considered is the reentry of a Space Shuttle in the transition from free molecular flow to continuum flow. The method used will be called Finite Pointset Method (FPM) approximating the solution by finite sets of particles in a rigorously defined way. Convergence results are cited while practical aspects of the algorithm are emphasized. Ideas for the transition to the Navier Stokes domain are shortly discussed.

The paper presents theoretical and numerical investigations on simulation methods for the Boltzmann equation with axisymmetric geometry. The main task is to reduce the computational effort by taking advantage of the symmetry in the solution of the Boltzmann equation.; The reduction automatically leads to the concept of weighting functions for the radial space coordinate and therefore to a modified Boltzmann equation. Consequently the classical simulation methods have to be modified according to the new equation.; The numerical results shown in this paper - rarefied gas flows around a body with axisymmetric geometry - were done in the framework of the European space project HERMES.

Particle methods to simulate rarefied gas flows have found an increasing interest in Computational Fluid Dynamics during the last decade, see for example [1], [2], [3] and [4]. The general goal is to develop numerical schemes which are reliable enough to substitute real windtunnel experiments, needed for example in space research, by computer experiments. In order to achieve this goal one needs numerical methods solving the Boltzmann equation including all important physical effects. In general this means 3D computations for a chemically reacting rarefied gas. With codes of this kind at hand, Boltzmann simulation becomes a powerful tool in studying rarefied gas phenomena.

We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.

The paper presents some adaptive load balance techniques for the simulation of rarefied gas flows on parallel computers. It is shown that a static load balance is insufficient to obtain a scalable parallel efficiency. Hence, two adaptive techniques are investigated which are based on simple algorithms. Numerical results show that using heuristic techniques one can achieve a sufficiently high efficiency over a wide range of different hardware platforms.

We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.

The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.