### Refine

#### Year of publication

- 1999 (206) (remove)

#### Document Type

- Preprint (206) (remove)

#### Keywords

- Case-Based Reasoning (10)
- Fallbasiertes Schliessen (5)
- case-based problem solving (5)
- Abstraction (4)
- Fallbasiertes Schließen (4)
- Knowledge Acquisition (4)
- Internet (3)
- Knowledge acquisition (3)
- Maschinelles Lernen (3)
- case-based reasoning (3)

#### Faculty / Organisational entity

- Fachbereich Informatik (206) (remove)

We will answer a question posed in [DJK91], and will show that Huet's completion algorithm [Hu81] becomes incomplete, i.e. it may generate a term rewriting system that is not confluent, if it is modified in a way that the reduction ordering used for completion can be changed during completion provided that the new ordering is compatible with the actual rules. In particular, we will show that this problem may not only arise if the modified completion algorithm does not terminate: Even if the algorithm terminates without failure, the generated finite noetherian term rewriting system may be non-confluent. Most existing implementations of the Knuth-Bendix algorithm provide the user with help in choosing a reduction ordering: If an unorientable equation is encountered, then the user has many options, especially, the one to orient the equation manually. The integration of this feature is based on the widespread assumption that, if equations are oriented by hand during completion and the completion process terminates with success, then the generated finite system is a maybe non terminating but locally confluent system (see e.g. [KZ89]). Our examples will show that this assumption is not true.

Even though it is not very often admitted, partial functions do play asignificant role in many practical applications of deduction systems. Kleenehas already given a semantic account of partial functions using three-valuedlogic decades ago, but there has not been a satisfactory mechanization. Recentyears have seen a thorough investigation of the framework of many-valuedtruth-functional logics. However, strong Kleene logic, where quantificationis restricted and therefore not truth-functional, does not fit the frameworkdirectly. We solve this problem by applying recent methods from sorted logics.This paper presents a resolution calculus that combines the proper treatmentof partial functions with the efficiency of sorted calculi.

The introduction of sorts to first-order automated deduction has broughtgreater conciseness of representation and a considerable gain in efficiency byreducing the search space. It is therefore promising to treat sorts in higherorder theorem proving as well.In this paper we present a generalization of Huet's Constrained Resolutionto an order-sorted type theory SigmaT with term declarations. This system buildscertain taxonomic axioms into the unification and conducts reasoning withthem in a controlled way. We make this notion precise by giving a relativizationoperator that totally and faithfully encodes SigmaT into simple type theory.

In this report we present a case study of employing goal-oriented heuristics whenproving equational theorems with the (unfailing) Knut-Bendix completion proce-dure. The theorems are taken from the domain of lattice ordered groups. It will bedemonstrated that goal-oriented (heuristic) criteria for selecting the next critical paircan in many cases significantly reduce the search effort and hence increase per-formance of the proving system considerably. The heuristic, goalADoriented criteriaare on the one hand based on so-called "measures" measuring occurrences andnesting of function symbols, and on the other hand based on matching subterms.We also deal with the property of goal-oriented heuristics to be particularly helpfulin certain stages of a proof. This fact can be addressed by using them in a frame-work for distributed (equational) theorem proving, namely the "teamwork-method".

We provide an overview of UNICOM, an inductive theorem prover for equational logic which isbased on refined rewriting and completion techniques. The architecture of the system as well as itsfunctionality are described. Moreover, an insight into the most important aspects of the internalproof process is provided. This knowledge about how the central inductive proof componentof the system essentially works is crucial for human users who want to solve non-trivial prooftasks with UNICOM and thoroughly analyse potential failures. The presentation is focussedon practical aspects of understanding and using UNICOM. A brief but complete description ofthe command interface, an installation guide, an example session, a detailed extended exampleillustrating various special features and a collection of successfully handled examples are alsoincluded.

While most approaches to similarity assessment are oblivious of knowledge and goals, there is ample evidence that these elements of problem solving play an important role in similarity judgements. This paper is concerned with an approach for integrating assessment of similarity into a framework of problem solving that embodies central notions of problem solving like goals, knowledge and learning.

To prove difficult theorems in a mathematical field requires substantial know-ledge of that field. In this thesis a frame-based knowledge representation formal-ism including higher-order sorted logic is presented, which supports a conceptualrepresentation and to a large extent guarantees the consistency of the built-upknowledge bases. In order to operationalize this knowledge, for instance, in anautomated theorem proving system, a class of sound morphisms from higher-orderinto first-order logic is given, in addition a sound and complete translation ispresented. The translations are bijective and hence compatible with a later proofpresentation.In order to prove certain theorems the comprehension axioms are necessary,(but difficult to handle in an automated system); such theorems are called trulyhigher-order. Many apparently higher-order theorems (i.e. theorems that arestated in higher-order syntax) however are essentially first-order in the sense thatthey can be proved without the comprehension axioms: for proving these theoremsthe translation technique as presented in this thesis is well-suited.

We transform a user-friendly formulation of aproblem to a machine-friendly one exploiting the variabilityof first-order logic to express facts. The usefulness of tacticsto improve the presentation is shown with several examples.In particular it is shown how tactical and resolution theoremproving can be combined.

There are well known examples of monoids in literature which do not admit a finite andcanonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditionalterm rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems wegive finite and canonical presentations of the examples mentioned above. Furthermore weshow, that each finitely generated monoid with decidable word problem is embeddable in amonoid which has a finite canonical conditional presentation.

Typical examples, that is, examples that are representative for a particular situationor concept, play an important role in human knowledge representation and reasoning.In real life situations more often than not, instead of a lengthy abstract characteriza-tion, a typical example is used to describe the situation. This well-known observationhas been the motivation for various investigations in experimental psychology, whichalso motivate our formal characterization of typical examples, based on a partial orderfor their typicality. Reasoning by typical examples is then developed as a special caseof analogical reasoning using the semantic information contained in the correspondingconcept structures. We derive new inference rules by replacing the explicit informa-tion about connections and similarity, which are normally used to formalize analogicalinference rules, by information about the relationship to typical examples. Using theseinference rules analogical reasoning proceeds by checking a related typical example,this is a form of reasoning based on semantic information from cases.

This paper concerns a knowledge structure called method , within a compu-tational model for human oriented deduction. With human oriented theoremproving cast as an interleaving process of planning and verification, the body ofall methods reflects the reasoning repertoire of a reasoning system. While weadopt the general structure of methods introduced by Alan Bundy, we make anessential advancement in that we strictly separate the declarative knowledgefrom the procedural knowledge. This is achieved by postulating some stand-ard types of knowledge we have identified, such as inference rules, assertions,and proof schemata, together with corresponding knowledge interpreters. Ourapproach in effect changes the way deductive knowledge is encoded: A newcompound declarative knowledge structure, the proof schema, takes the placeof complicated procedures for modeling specific proof strategies. This change ofparadigm not only leads to representations easier to understand, it also enablesus modeling the even more important activity of formulating meta-methods,that is, operators that adapt existing methods to suit novel situations. In thispaper, we first introduce briefly the general framework for describing methods.Then we turn to several types of knowledge with their interpreters. Finally,we briefly illustrate some meta-methods.

We present a framework for the integration of the Knuth-Bendix completion algorithm with narrowing methods, compiled rewrite rules, and a heuristic difference reduction mechanism for paramodulation. The possibility of embedding theory unification algorithms into this framework is outlined. Results are presented and discussed for several examples of equality reasoning problems in the context of an actual implementation of an automated theorem proving system (the Mkrp-system) and a fast C implementation of the completion procedure. The Mkrp-system is based on the clause graph resolution procedure. The thesis shows the indispensibility of the constraining effects of completion and rewriting for equality reasoning in general and quantifies the amount of speed-up caused by various enhancements of the basic method. The simplicity of the superposition inference rule allows to construct an abstract machine for completion, which is presented together with computation times for a concrete implementation.

This report presents the main ideas underlyingtheOmegaGamma mkrp-system, an environmentfor the development of mathematical proofs. The motivation for the development ofthis system comes from our extensive experience with traditional first-order theoremprovers and aims to overcome some of their shortcomings. After comparing the benefitsand drawbacks of existing systems, we propose a system architecture that combinesthe positive features of different types of theorem-proving systems, most notably theadvantages of human-oriented systems based on methods (our version of tactics) andthe deductive strength of traditional automated theorem provers.In OmegaGamma mkrp a user first states a problem to be solved in a typed and sorted higher-order language (called POST ) and then applies natural deduction inference rules inorder to prove it. He can also insert a mathematical fact from an integrated data-base into the current partial proof, he can apply a domain-specific problem-solvingmethod, or he can call an integrated automated theorem prover to solve a subprob-lem. The user can also pass the control to a planning component that supports andpartially automates his long-range planning of a proof. Toward the important goal ofuser-friendliness, machine-generated proofs are transformed in several steps into muchshorter, better-structured proofs that are finally translated into natural language.This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3)

An important property and also a crucial point ofa term rewriting system is its termination. Transformation or-derings, developed by Bellegarde & Lescanne strongly based on awork of Bachmair & Dershowitz, represent a general technique forextending orderings. The main characteristics of this method aretwo rewriting relations, one for transforming terms and the otherfor ensuring the well-foundedness of the ordering. The centralproblem of this approach concerns the choice of the two relationssuch that the termination of a given term rewriting system can beproved. In this communication, we present a heuristic-based al-gorithm that partially solves this problem. Furthermore, we showhow to simulate well-known orderings on strings by transformationorderings.

Mechanised reasoning systems and computer algebra systems have apparentlydifferent objectives. Their integration is, however, highly desirable, since in manyformal proofs both of the two different tasks, proving and calculating, have to beperformed. Even more importantly, proof and computation are often interwoven andnot easily separable. In the context of producing reliable proofs, the question howto ensure correctness when integrating a computer algebra system into a mechanisedreasoning system is crucial. In this contribution, we discuss the correctness prob-lems that arise from such an integration and advocate an approach in which thecalculations of the computer algebra system are checked at the calculus level of themechanised reasoning system. This can be achieved by adding a verbose mode to thecomputer algebra system which produces high-level protocol information that can beprocessed by an interface to derive proof plans. Such a proof plan in turn can beexpanded to proofs at different levels of abstraction, so the approach is well-suited forproducing a high-level verbalised explication as well as for a low-level machine check-able calculus-level proof. We present an implementation of our ideas and exemplifythem using an automatically solved extended example.

We propose a specification language for the formalization of data types with par-tial or non-terminating operations as part of a rewrite-based logical frameworkfor inductive theorem proving. The language requires constructors for designat-ing data items and admits positive/negative conditional equations as axioms inspecifications. The (total algebra) semantics for such specifications is based onso-called data models. We present admissibility conditions that guarantee theunique existence of a distinguished data model with properties similar to thoseof the initial model of a usual equational specification. Since admissibility of aspecification requires confluence of the induced rewrite relation, we provide aneffectively testable confluence criterion which does not presuppose termination.

To prove difficult theorems in a mathematical field requires substantial know-ledge of that field. In this paper a frame-based knowledge representation formalismis presented, which supports a conceptual representation and to a large extent guar-antees the consistency of the built-up knowledge bases. We define a semantics ofthe representation by giving a translation into the underlaying logic.

The amount of user interaction is the prime cause of costs in interactiveprogram verification. This paper describes an internal analogy techniquethat reuses subproofs in the verification of state-based specifications. Itidentifies common patterns of subproofs and their justifications in orderto reuse these subproofs; thus significant savings on the number of userinteractions in a verification proof are achievable.

We present an empirical study of mathematical proofs by diagonalization, the aim istheir mechanization based on proof planning techniques. We show that these proofs canbe constructed according to a strategy that (i) finds an indexing relation, (ii) constructsa diagonal element, and (iii) makes the implicit contradiction of the diagonal elementexplicit. Moreover we suggest how diagonal elements can be represented.

Die Entwicklung des Zusammenlebens der Menschen geht immer mehr den Weg zur Informations- und Mediengesellschaft. Nicht zuletzt aufgrund der weltweiten Vernetzung ist es uns in minutenschnelle möglich, fast alle erdenklichen Informationen zu Hause auf den Bildschirm geliefert zu bekommen. Es findet sich so jeder zwar in einer gewissen schützenden Anonymität, aber dennoch einer genauso gewollten, wie erschreckenden Transparenz wieder. Jeder klassifiziert in gewisser Weise Informationen, die er preisgibt etwa in öffentliche, persönliche und vertrauliche Nachrichten. Gerade hier müssen Techniken und Methoden bereitstehen, um in dieser anonymen Transparenz Informationen, die nur für spezielle Empfänger gedacht sind vor unbefugtem Zugriff zu schützen und nur denjenigen zugänglich zu machen, die dazu berechtigt sind. Diesen Wunsch hat nicht nur allgemein die Gesellschaft, sondern im speziellen wird die Entwicklung auf diesem Gebiet gerade von staatlichen und militärischen Einrichtungen gefordert und gefördert. So sind häufig eingesetzte Werkzeuge die Methoden der Kryptologie, aber solange es geheime Nachrichten gibt, wird es Angreifer geben, die versuchen, sich unberechtigten Zugang zu diesen Informationen zu verschaffen. Da die ständig wachsende Leistung von EDV-Anlagen das "Knacken" von Verschlüsselungsmethoden begünstigt, muß zu immer sichereren Chiffrierverfahren übergegangen werden. Dieser Umstand macht das Thema Kryptologie für den Moment hochaktuell und auf lange Sicht zu einem zeitlosen Forschungsgebiet der Mathematik und Informatik.