### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (1031)
- Dissertation (549)
- Bericht (399)
- Wissenschaftlicher Artikel (160)
- Konferenzveröffentlichung (23)
- Diplomarbeit (22)
- Teil eines Periodikums (21)
- Arbeitspapier (12)
- Masterarbeit (9)
- Vorlesung (7)

#### Sprache

- Englisch (2254) (entfernen)

#### Schlagworte

- AG-RESY (47)
- PARO (25)
- SKALP (15)
- Visualisierung (13)
- Wavelet (13)
- Case-Based Reasoning (11)
- Inverses Problem (11)
- RODEO (11)
- Mehrskalenanalyse (10)
- resonances (10)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (921)
- Fachbereich Informatik (622)
- Fachbereich Physik (230)
- Fraunhofer (ITWM) (203)
- Fachbereich Maschinenbau und Verfahrenstechnik (92)
- Fachbereich Elektrotechnik und Informationstechnik (75)
- Fachbereich Chemie (54)
- Fachbereich Biologie (25)
- Fachbereich Sozialwissenschaften (15)
- Fachbereich ARUBI (7)

We derive minimax rates for estimation in anisotropic smoothness classes. This rate is attained by a coordinatewise thresholded wavelet estimator based on a tensor product basis with separate scale parameter for every dimension. It is shown that this basis is superior to its one-scale multiresolution analog, if different degrees of smoothness in different directions are present.; As an important application we introduce a new adaptive wavelet estimator of the time-dependent spectrum of a locally stationary time series. Using this model which was resently developed by Dahlhaus, we show that the resulting estimator attains nearly the rate, which is optimal in Gaussian white noise, simultaneously over a wide range of smoothness classes. Moreover, by our new approach we overcome the difficulty of how to choose the right amount of smoothing, i.e. how to adapt to the appropriate resolution, for reconstructing the local structure of the evolutionary spectrum in the time-frequency plane.

With this article we first like to give a brief review on wavelet thresholding methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these applications are based on Gaussian approximations of the empirical coefficients. For regression and density estimation with independent observations, we establish joint asymptotic normality of the empirical coefficients by means of strong approximations. Then we describe how one can prove asymptotic normality under mixing conditions on the observations by cumulant techniques.; In the second part, we apply these non-linear adaptive shrinking schemes to spectral estimation problems for both a stationary and a non-stationary time series setup. For the latter one, in a model of Dahlhaus on the evolutionary spectrum of a locally stationary time series, we present two different approaches. Moreover, we show that in classes of anisotropic function spaces an appropriately chosen wavelet basis automatically adapts to possibly different degrees of regularity for the different directions. The resulting fully-adaptive spectral estimator attains the rate that is optimal in the idealized Gaussian white noise model up to a logarithmic factor.

This paper is devoted to the mathematica l description of the solution of the so-called rainflow reconstruction problem, i.e. the problem of constructing a time series with an a priori given rainflow m atrix. The algorithm we present is mathematically exact in the sense that no app roximations or heuristics are involved. Furthermore it generates a uniform distr ibution of all possible reconstructions and thus an optimal randomization of the reconstructed series. The algorithm is a genuine on-line scheme. It is easy adj ustable to all variants of rainflow such as sysmmetric and asymmetric versions a nd different residue techniques.

In the automotive industry both the loca l strain approach and rainflow counting are well known and approved tools in the numerical estimation of the lifetime of a new developed part especially in the automotive industry. This paper is devoted to the combination of both tools and a new algorithm is given that takes advantage of the inner structure of the most used damage parameters.

The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.

This paper deals with domain decomposition methods for kinetic and drift diffusion semiconductor equations. In particular accurate coupling conditions at the interface between the kinetic and drift diffusion domain are given. The cases of slight and strong nonequilibrium situations at the interface are considered and some numerical examples are shown.

A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

The ideas of texture analysis by means of the structure tensor are combined with the scale-space concept of anisotropic diffusion filtering. In contrast to many other nonlinear diffusion techniques, the proposed one uses a diffusion tensor instead of a scalar diffusivity. This allows true anisotropic behaviour. The preferred diffusion direction is determined according to the phase angle of the structure tensor. The diffusivity in this direction is increasing with the local coherence of the signal. This filter is constructed in such a way that it gives a mathematically well-funded scale-space representation of the original image. Experiments demonstrate its usefulness for the processing of interrupted one-dimensional structures such as fingerprint and fabric images.

Many interesting problems arise from the study of the behavior of fluids. From a theoretical point of view Fluid Dynamics works with a well defined set of equat ions for which it is expected to get a clear description of the solutions. Unfortunately, in ge neral this is not easy even if the many experiments performed in the field seem to indicate which path to follow. Some of the basic questions are still either partially or widely open. For example we would like to have a better understanding on : 1. Questions for both bounded and unbounded domains on regularity, uniqueness, long time behavior of the solutions. 2. How well do solutions to the fluid equations fit to the real flow. Depending on the type of data most of the answers to these questions are knonw, when we work in two dimensions. For solutions in three dimensions, in general, we have only partial answers.

We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.