### Refine

#### Year of publication

#### Document Type

- Preprint (1179) (remove)

#### Keywords

- AG-RESY (17)
- Case-Based Reasoning (16)
- Mehrskalenanalyse (10)
- RODEO (10)
- Approximation (9)
- Fallbasiertes Schliessen (9)
- Wavelet (9)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)

#### Faculty / Organisational entity

Die zunehmende Zerstörung der Natur durch die Auswirkungen von Produktion und Konsum, die steigende Sensibilität der Bevölkerung für ökologische Themen sowie eine verschärfte Umweltgesetzgebung führen im Management der Unternehmen zu einem stärkeren Umwelt bewußtsein. Dabei wird immer häufiger versucht, den Belangen der Umwelt durch die Inte gration ökologischer Aspekte in die Unternehmenspolitik Rechnung zu tragen. Das Ziel eines derartigen betrieblichen Umweltmanagements ist es, umweltrelevante Schwachstellen des Unternehmens zu erkennen, um Ansatzpunkte für eine Verbesserung der ökolo gischen Situation zu erhalten und diese umzusetzen.

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 wires by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin wave modes laterally quantized in a single wire with quantized wavevector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wavevector interval, where each mode is observed, is calculated using a light scattering theory for confined geometries. The frequen-cies of the modes are calculated, taking into account finite size effects. The results of the calculations are in a good agreement with the experimental data.

Collisions of Spin Wave Envelope Solitons and Self-Focused Spin Wave Packets in Magnetic Films
(1999)

Head-on collisions between two-dimensional self-focused spin wave packets and between quasi-one-dimensional spin wave envelope solitons have been directly observed for the first time in yttrium-iron garnet (YIG) films by means of a space- and time-resolved Brillouin light scattering technique. We show that quasi-one-dimensional envelope solitons formed in narrow film strips ("waveguides") retain their shapes after collision, while the two-dimensional self-focused spin wave packets formed in wide YIG films are destroyed in collision.

High frequency switching of single domain, uniaxial magnetic particles is discussed in terms of transition rates controlled by a small transverse bias field. It is shown that fast switching times can be achieved using bias fields an order of magnitude smaller than the effective anisotropy field. Analytical expressions for the switching time are derived in special cases and general configurations of practical interest are examined using numerical simulations.

We present detailed studies of the enhanced coercivity of exchange-bias bilayer Fe/MnPd, both experimentally and theoretically. We have demonstrated that the existence of large higher-order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness are well explained by a phenomenological model by introducing higher-order anisotropy terms into the total free energy of the system.

The asymptotic analysis of IBVPs for the singularly perturbed parabolic PDE ... in the limit epsilon to zero motivate investigations of certain recursively defined approximative series ("ping-pong expansions"). The recursion formulae rely on operators assigning to a boundary condition at the left or the right boundary a solution of the parabolic PDE. Sufficient conditions for uniform convergence of ping-pong expansions are derived and a detailed analysis for the model problem ... is given.

This paper discusses the benefits and drawbacks of caching and replication strategies in the WWW with respect to the Internet infrastructure. Bandwidth consumption, latency, and overall error rates are considered to be most important from a network point of view. The dependencies of these values with input parameters like degree of replication, document popularity, actual cache hit rates, and error rates are highlighted. In order to determine the influence of different caching and replication strategies on the behavior of a single proxy server with respect to these values, trace-based simulations are used. Since the overall effects of such strate- gies can hardly be decided with this approach alone, a mathematical model has been developed to deal with their influence on the network as a whole. Together, this two-tiered approach permits us to propose quantita- tive assessments on the influence different caching and replication proposals (are going to) have on the Inter- net infrastructure.

We report on the exchange bias effect as a function of the in-plane direction of the applied field in two-fold symmetric, epitaxial Ni80Fe20/Fe50Mn50 bilayers grown on Cu(110) single crystal substrates. An enhancement of the exchange bias field, Heb, up to a factor of two is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the ex-change bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and four-fold anisotropy contributions are determined with high precision. The symmetry direction of the unidirec-tional anisotropy switches with increasing NiFe thickness from [110] to [001].

An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape aniso-tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.

Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

We report on the observation of spin wave quantization in square arrays of micron size circular magnetic Ni80Fe20 dots by means of Brillouin light scattering spectroscopy. For a large wavevector interval several discrete, dispersionless modes with a frequency splitting of up to 2.5 GHz were observed. The modes are identified as magnetostatic surface spin waves laterally quantized due to in- plane confinement in each single dot. The frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

This paper considers a transmission boundary-value problem for the time-harmonic Maxwell equations neglecting displacement currents which is frequently used for the numerical computation of eddy-currents. Across material boundaries the tangential components of the magnetic field H and the normal component of the magnetization müH are assumed to be continuous. this problem admits a hyperplane of solutions if the domains under consideration are multiply connected. Using integral equation methods and singular perturbation theory it is shown that this hyperplane contains a unique point which is the limit of the classical electromagnetic transmission boundary-value problem for vanishing displacement currents. Considering the convergence proof, a simple contructive criterion how to select this solution is immediately derived.

A Nonlinear Ray Theory
(1994)

A proof of the famous Huygens" method of wavefront construction is reviewed and it is shown that the method is embedded in the geometrical optics theory for the calculation of the intensity of the wave based on high frequency approximation. It is then shown that Huygens" method can be extended in a natural way to the construction of a weakly nonlinear wavefront. This is an elegant nonlinear ray theory based on an approximation published by the author in 1975 which was inspired by the work of Gubkin. In this theory, the wave amplitude correction is incorporated in the eikonal equation itself and this leads to a sytem of ray equations coupled to the transport equation. The theory shows that the nonlinear rays stretch due to the wave amplitude, as in the work of Choquet-Bruhat (1969), followed by Hunter, Majda, Keller and Rosales, but in addition the wavefront rotates due to a non-uniform distribution of the amplitude on the wavefront. Thus the amplitude of the wave modifies the rays and the wavefront geometry, which in turn affects the growth and decay of the amplitude. Our theory also shows that a compression nonlinear wavefront may develop a kink but an expansion one always remains smooth. In the end, an exact solution showing the resolution of a linear caustic due to nonlinearity has been presented. The theory incorporates all features of Whitham" s geometrical shock dynamics.

The edge enhancement property of a nonlinear diffusion equation with a suitable expression for the diffusivity is an important feature for image processing. We present an algorithm to solve this equation in a wavelet basis and discuss its one dimensional version in some detail. Sample calculations demonstrate principle effects and treat in particular the case of highly noise perturbed signals. The results are discussed with respect to performance, efficiency, choice of parameters and are illustrated by a large number of figures. Finally, a comparison with a Fourier method and a finite volume method is performed.

Particle Methods
(1994)