### Filtern

#### Erscheinungsjahr

- 2009 (35) (entfernen)

#### Dokumenttyp

- Bericht (35) (entfernen)

#### Schlagworte

#### Fachbereich / Organisatorische Einheit

In this work we use the Parsimonious Multi–Asset Heston model recently developed in [Dimitroff et al., 2009] at Fraunhofer ITWM, Department Financial Mathematics, Kaiserslautern (Germany) and apply it to Quanto options. We give a summary of the model and its calibration scheme. A suitable transformation of the Quanto option payoff is explained and used to price Quantos within the new framework. Simulated prices are given and compared to market prices and Black–Scholes prices. We find that the new approach underprices the chosen options, but gives better results than the Black–Scholes approach, which is prevailing in the literature on Quanto options.

In nancial mathematics stock prices are usually modelled directly as a result of supply and demand and under the assumption that dividends are paid continuously. In contrast economic theory gives us the dividend discount model assuming that the stock price equals the present value of its future dividends. These two models need not to contradict each other - in their paper Korn and Rogers (2005) introduce a general dividend model preserving the stock price to follow a stochastic process and to be equal to the sum of all its discounted dividends. In this paper we specify the model of Korn and Rogers in a Black-Scholes framework in order to derive a closed-form solution for the pricing of American Call options under the assumption of a known next dividend followed by several stochastic dividend payments during the option's time to maturity.

Home Health Care (HHC) services are becoming increasingly important in Europe’s aging societies. Elderly people have varying degrees of need for assistance and medical treatment. It is advantageous to allow them to live in their own homes as long as possible, since a long-term stay in a nursing home can be much more costly for the social insurance system than a treatment at home providing assistance to the required level. Therefore, HHC services are a cost-effective and flexible instrument in the social system. In Germany, organizations providing HHC services are generally either larger charities with countrywide operations or small private companies offering services only in a city or a rural area. While the former have a hierarchical organizational structure and a large number of employees, the latter typically only have some ten to twenty nurses under contract. The relationship to the patients (“customers”) is often long-term and can last for several years. Therefore acquiring and keeping satisfied customers is crucial for HHC service providers and intensive competition among them is observed.

Classical geometrically exact Kirchhoff and Cosserat models are used to study the nonlinear deformation of rods. Extension, bending and torsion of the rod may be represented by the Kirchhoff model. The Cosserat model additionally takes into account shearing effects. Second order finite differences on a staggered grid define discrete viscoelastic versions of these classical models. Since the rotations are parametrised by unit quaternions, the space discretisation results in differential-algebraic equations that are solved numerically by standard techniques like index reduction and projection methods. Using absolute coordinates, the mass and constraint matrices are sparse and this sparsity may be exploited to speed-up time integration. Further improvements are possible in the Cosserat model, because the constraints are just the normalisation conditions for unit quaternions such that the null space of the constraint matrix can be given analytically. The results of the theoretical investigations are illustrated by numerical tests.

The rotational spinning of viscous jets is of interest in many industrial applications, including pellet manufacturing [4, 14, 19, 20] and drawing, tapering and spinning of glass and polymer fibers [8, 12, 13], see also [15, 21] and references within. In [12] an asymptotic model for the dynamics of curved viscous inertial fiber jets emerging from a rotating orifice under surface tension and gravity was deduced from the three-dimensional free boundary value problem given by the incompressible Navier-Stokes equations for a Newtonian fluid. In the terminology of [1], it is a string model consisting of balance equations for mass and linear momentum. Accounting for inner viscous transport, surface tension and placing no restrictions on either the motion or the shape of the jet’s center-line, it generalizes the previously developed string models for straight [3, 5, 6] and curved center-lines [4, 13, 19]. Moreover, the numerical results investigating the effects of viscosity, surface tension, gravity and rotation on the jet behavior coincide well with the experiments of Wong et.al. [20].

In this paper, we present a viscoelastic rod model that is suitable for fast and sufficiently accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (’stiff ’ dof), bending and torsion (’soft’ dof). For inner dissipation, a consistent damping potential from Antman is chosen. Our discrete model is based on a finite difference discretisation on a staggered grid. The right-hand side function f and the Jacobian ∂f/∂(q, v, t) of the dynamical system q˙ = v, v˙ = f(q, v, t) – after index reduction from three to zero – is free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore cheap to evaluate. For the time integration of the system, we use well established stiff solvers like RADAU5 or DASPK. As our model yields computation times within milliseconds, it is suitable for interactivemanipulation in ’virtual reality’ applications. In contrast to fast common VR rod models, our model reflects the structural mechanics solutions sufficiently correct, as comparison with ABAQUS finite element results shows.

The understanding of the motion of long slender elastic fibers in turbulent flows is of great interest to research, development and production in technical textiles manufacturing. The fiber dynamics depend on the drag forces that are imposed on the fiber by the fluid. Their computation requires in principle a coupling of fiber and flow with no-slip interface conditions. However, theneeded high resolution and adaptive grid refinement make the direct numerical simulation of the three-dimensional fluid-solid-problem for slender fibers and turbulent flows not only extremely costly and complex, but also still impossible for practically relevant applications. Embedded in a slender body theory, an aerodynamic force concept for a general drag model was therefore derived on basis of a stochastic k-o; description for a turbulent flow field in [23]. The turbulence effects on the fiber dynamics were modeled by a correlated random Gaussian force and its asymptotic limit on a macroscopic fiber scale by Gaussian white noise with flow-dependent amplitude. The concept was numerically studied under the conditions of a melt-spinning process for nonwoven materials in [24] – for the specific choice of a non-linear Taylor drag model. Taylor [35] suggested the heuristic model for high Reynolds number flows, Re in [20, 3 · 105], around inclined slender objects under an angle of attack of alpha in (pi/36, pi/2] between flow and object tangent. Since the Reynolds number is considered with respect to the relative velocity between flow and fiber, the numerical results lackaccuracy evidently for small Re that occur in cases of flexible light fibers moving occasionally with the flow velocity. In such a regime (Re << 1), linear Stokes drag forces were successfully applied for the prediction of small particles immersed in turbulent flows, see e.g. [25, 26, 32, 39], a modifiedStokes force taking also into account the particle oscillations was presented in [14]. The linear drag relation was also conferred to longer filaments by imposing free-draining assumptions [29, 8]. Apart from this, the Taylor drag suffers from its non-applicability to tangential incident flow situations (alpha = 0) that often occur in fiber and nonwoven production processes.

This contribution presents a model reduction method for nonlinear problems in structural mechanics. Emanating from a Finite Element model of the structure, a subspace and a lookup table are generated which do not require a linearisation of the equations. The method is applied to a model created with commercial FEM software. In this case, the terms describing geometrical and material nonlinearities are not explicitly known.

Im Sommersemester 2008 führte die AG Optimierung, FB Mathematik zusammen mit dem FB Chemie und dem FB Pädagogik ein interdisziplinäres Seminar zur „Fachdidaktik Chemie und Mathematik“ durch. Durch dieses integrative Lehrveranstaltungskonzept sollte die Nachhaltigkeit der Ausbildung gestärkt und die Verknüpfung von Allgemeiner Didaktik mit der Fachdidaktik sowie zwischen verschiedenen Fachbereichen gefördert werden. In dieser speziellen Veranstaltung erarbeiteten sich die Teilnehmer Inhalte in der Schnittmenge von Chemie und Mathematik, nämlich Kristallgeometrie, Analysis und Titration sowie Graphentheorie und Trennverfahren. Ihre Erkenntnisse wurden im Rahmen von Seminarvorträgen präsentiert und ausgearbeitet. Im folgenden Report befinden sich die Ausarbeitungen, welche Lernziele und Kompetenzen, Sach-, Methodische und Didaktische Analysen sowie Unterrichtsentwürfe umfassen.

In this work we establish a hierarchy of mathematical models for the numerical simulation of the production process of technical textiles. The models range from highly complex three-dimensional fluid-solid interactions to one-dimensional fiber dynamics with stochastic aerodynamic drag and further to efficiently handable stochastic surrogate models for fiber lay-down. They are theoretically and numerically analyzed and coupled via asymptotic analysis, similarity estimates and parameter identification. Themodel hierarchy is applicable to a wide range of industrially relevant production processes and enables the optimization, control and design of technical textiles.