Filtern
Erscheinungsjahr
Schlagworte
Fachbereich / Organisatorische Einheit
- Fachbereich Mathematik (28)
- Fraunhofer (ITWM) (1)
In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.
We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.
The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.
The paper presents some approximation methods for the Boltzmann equation. In the first part fully implicit discretization techniques for the spatially homogeneous Boltzmann equation are investigated. The implicit equation is solved using an iteration process. It is shown that the iteration converges to the correct solution for the moments of the distribution function as long as the mass conservation is strictly fulfilled. For a simple model Boltzmann equation some unexpected features of the implicit scheme and the corresponding iteration process are clarified. In the second part a new iteration algorithm is proposed which should be used for the stationary Boltzmann equation. The realization of the method is very similar to the standard splitting algorithms except some new stochastic elements.
Second Order Scheme for the Spatially Homogeneous Boltzmann Equation with Maxwellian Molecules
(1995)
In the standard approach, particle methods for the Boltzmann equation are obtained using an explicit time discretization of the spatially homogeneous Boltzmann equation. This kind of discretization leads to a restriction of the discretization parameter as well as on the differential cross section in the case of the general Boltzmann equation. Recently, it was shown, how to construct an implicit particle scheme for the Boltzmann equation with Maxwellian molecules. The present paper combines both approaches using a linear combination of explicit and implicit discretizations. It is shown that the new method leads to a second order particle method, when using an equiweighting of explicit and implicit discretization.
Numerical Simulation of the Stationary One-Dimensional Boltzmann Equation by Particle Methods
(1995)
The paper presents a numerical simulation technique - based on the well-known particle methods - for the stationary, one-dimensional Boltzmann equation for Maxwellian molecules. In contrast to the standard splitting methods, where one works with the instationary equation, the current approach simulates the direct solution of the stationary problem. The model problem investigated is the heat transfer between two parallel plates in the rarefied gas regime. An iteration process is introduced which leads to the stationary solution of the exact - space discretized - Boltzmann equation, in the sense of weak convergence.
The paper presents numerical results on the simulation of boundary value problems for the Boltzmann equation in one and two dimensions. In the one-dimensional case, we use prescribed fluxes at the left and diffusive conditions on the right end of a slab to study the resulting steady state solution. Moreover, we compute the numerical density function in velocity space and compare the result with the Chapman-Enskog distribution obtained in the limit for continuous media. The aim of the two-dimensional simulations is to investigate the possibility of a symmetry break in the numerical solution.
In the present paper we investigate the Rayleigh-Benard convection in rarefied gases and demonstrate by numerical experiments the transition from purely thermal conduction to a natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We address to the problem how the critical value for the Rayleigh number defined for incompressible vsicous flows may be translated to rarefied gas flows. Moreover, the simulations obtained for a Knudsen number Kn=0.001 and Froude number Fr=1 show a further transition from regular Rayleigh-Benard cells to a pure unsteady behavious with moving vortices.