### Refine

#### Year of publication

- 1999 (397) (remove)

#### Document Type

- Preprint (397) (remove)

#### Keywords

- Case-Based Reasoning (10)
- Fallbasiertes Schliessen (5)
- Location Theory (5)
- case-based problem solving (5)
- Abstraction (4)
- Fallbasiertes Schließen (4)
- Knowledge Acquisition (4)
- Internet (3)
- Knowledge acquisition (3)
- Maschinelles Lernen (3)

#### Faculty / Organisational entity

Abstract: Random matrix theory (RMT) is a powerful statistical tool to model spectral fluctuations. In addition, RMT provides efficient means to separate different scales in spectra. Recently RMT has found application in quantum chromodynamics (QCD). In mesoscopic physics, the Thouless energy sets the universal scale for which RMT applies. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator with staggered fermions and SU_(2) lattice gauge fields. Comparing lattice data with RMT predictions we find deviations which allow us to give an estimate for this scale.

Beyond the Thouless energy
(1999)

Abstract: The distribution and the correlations of the small eigenvalues of the Dirac operator are described by random matrix theory (RMT) up to the Thouless energy E_= 1 / sqrt (V), where V is the physical volume. For somewhat larger energies, the same quantities can be described by chiral perturbation theory (chPT). For most quantities there is an intermediate energy regime, roughly 1/V < E < 1/sqrt (V), where the results of RMT and chPT agree with each other. We test these predictions by constructing the connected and disconnected scalar susceptibilities from Dirac spectra obtained in quenched SU(2) and SU(3) simulations with staggered fermions for a variety of lattice sizes and coupling constants. In deriving the predictions of chPT, it is important totake into account only those symmetries which are exactly realized on the lattice.

Abstract: Recently, the chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that the deviations of lattice results from random matrix theory starting around the so-called Thouless energy can be understood in terms of chiral perturbation theory as well. Comparison of lattice data with chiral perturbation theory formulae allows us to compute the pion decay constant. We present results from a calculation for quenched SU(2) with Kogut-Susskind fermions at ß = 2.0 and 2.2.

Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

Abstract: We describe a general technique that allows for an ideal transfer of quantum correlations between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss possible applications such as quantum state memories, generation of squeezed atomic states, preparation of entangled atomic ensembles and quantum information processing.

Abstract: We show that it is possible to "store" quantum states of single-photon fields by mapping them onto collective meta-stable states of an optically dense, coherently driven medium inside an optical resonator. An adiabatic technique is suggested which allows to transfer non-classical correlations from traveling-wave single-photon wave-packets into atomic states and vise versa with nearly 100% efficiency. In contrast to previous approaches involving single atoms, the present technique does not require the strong coupling regime corresponding to high-Q micro-cavities. Instead, intracavity Electromagnetically Induced Transparency is used to achieve a strong coupling between the cavity mode and the atoms.

Mirrorless oscillation based on resonantly enhanced 4-wave mixing: All-order analytic solutions
(1999)

Abstract: The phase transition to mirrorless oscillation in resonantly enhanced four-wave mixing in double-A systems are studied analytically for the ideal case of infinite lifetimes of ground-state coherences. The stationary susceptibilities are obtained in all orders of the generated fields and analytic solutions of the coupled nonlinear differential equations for the field amplitudes are derived and discussed.

Abstract: We utilize the generation of large atomic coherence to enhance the resonant nonlinear magneto-optic effect by several orders of magnitude, thereby eliminating power broadening and improving the fundamental signal-to-noise ratio. A proof-of-principle experiment is carried out in a dense vapor of Rb atoms. Detailed numerical calculations are in good agreement with the experimental results. Applications such as optical magnetometry or the search for violations of parity and time reversal symmetry are feasible.

Abstract: Spontaneous emission and Lamb shift of atoms in absorbing dielectrics are discussed. A Green's-function approach is used based on the multipolar interaction Hamiltonian of a collection of atomic dipoles with the quantised radiation field. The rate of decay and level shifts are determined by the retarded Green's-function of the interacting electric displacement field, which is calculated from a Dyson equation describing multiple scattering. The positions of the atomic dipoles forming the dielectrics are assumed to be uncorrelated and a continuum approximation is used. The associated unphysical interactions between different atoms at the same location is eliminated by removing the point-interaction term from the free-space Green's-function (local field correction). For the case of an atom in a purely dispersive medium the spontaneous emission rate is altered by the well-known Lorentz local-field factor. In the presence of absorption a result different from previously suggested expressions is found and nearest-neighbour interactions are shown to be important.

Abstract: We aim to establish a link between path-integral formulations of quantum and classical field theories via diagram expansions. This link should result in an independent constructive characterisation of the measure in Feynman path integrals in terms of a stochastic differential equation (SDE) and also in the possibility of applying methods of quantum field theory to classical stochastic problems. As a first step we derive in the present paper a formal solution to an arbitrary c-number SDE in a form which coincides with that of Wick's theorem for interacting bosonic quantum fields. We show that the choice of stochastic calculus in the SDE may be regarded as a result of regularisation, which in turn removes ultraviolet divergences from the corresponding diagram series.

We show that the solution to an arbitrary c-number stochastic differential equation (SDE) can be represented as a diagram series. Both the diagram rules and the properties of the graphical elements reflect causality properties of the SDE and this series is therefore called a causal diagram series. We also discuss the converse problem, i.e. how to construct an SDE of which a formal solution is a given causal diagram series. This then allows for a nonperturbative summation of the diagram series by solving this SDE, numerically or analytically.

Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

We present results from a study of the coherence properties of a system involving three discrete states coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension of the standard laser-induced continuum structure (LICS) which involves two discrete states and two lasers. We show that in the tripod scheme, there exist two population trapping conditions; in some cases these conditions are easier to satisfy than the single trapping condition in two-state LICS. Depending on the pulse timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the solution for coincident pulses, the behaviour of the system in the adiabatic limit for delayed pulses, the conditions for no ionization and for maximal ionization, and the optimal conditions for population transfer between the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the continuum, the population dynamics reduces to a standard two-state LICS problem (involving the other two states) with modified parameters; this provides the opportunity to customize the parameters of a given two-state LICS system.

Abstract: In this paper we present a renormalizability proof for spontaneously broken SU (2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormalization group adapted to perturbation theory. The power counting part of the proof, which is conceptually and technically simple, follows the same lines as that for any other renormalizable theory. The main difficulty stems from the fact that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the Slavnov-Taylor identities of SU (2) Yang-Mills theory on which the gauge invariance of the renormalized theory is based.

Spektralsequenzen
(1999)

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.

Das Skript vermittelt die für eine Beschlagwortung nach den Regeln für den Schlagwortkatalog (RSWK) notwendigen Grundkenntnisse. Darüber hinaus wird beschrieben, wie die Schlagwortdaten in der Verbunddatenbank des Südwestdeutschen Bibliotheksverbund (SWB) strukturiert sind, welche Prinzipien bei der kooperativen Beschlagwortung im SWB einzuhalten sind und wie die Daten erfasst werden müssen . Des weiteren werden die in der Datenbank des SWB realisierten Suchmöglichkeiten aufgezeigt und aufgelistet, wie die dazugehörigen Suchbefehle lauten. Für Fragen der Organisation des Geschäftsgang der Teilnehmerbibliotheken wird exemplarisch der Arbeitsablauf an der UB Kaiserslautern dargestellt.

Abstract: The periodic bounce configurations responsible for quantum tunneling are obtained explicitly and are extended to the finite energy case for minisuperspace models of the Universe. As a common feature of the tunneling models at finite energy considered here we observe that the period of the bounce increases with energy monotonically. The periodic bounces do not have bifurcations and make no contribution to the nucleation rate except the one with zero energy. The sharp first order phase transition from quantum tunneling to thermal activation is verified with the general criterions.

We consider a (2 + 1)-dimensional mechanical system with the Lagrangian linear in the torsion of a light-like curve. We give Hamiltonian formulation of this system and show that its mass and spin spectra are defined by one-dimensional nonrelativistic mechanics with a cubic potential. Consequently, this system possesses the properties typical of resonance-like particles.

Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the e effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.

Die Entwicklung des Zusammenlebens der Menschen geht immer mehr den Weg zur Informations- und Mediengesellschaft. Nicht zuletzt aufgrund der weltweiten Vernetzung ist es uns in minutenschnelle möglich, fast alle erdenklichen Informationen zu Hause auf den Bildschirm geliefert zu bekommen. Es findet sich so jeder zwar in einer gewissen schützenden Anonymität, aber dennoch einer genauso gewollten, wie erschreckenden Transparenz wieder. Jeder klassifiziert in gewisser Weise Informationen, die er preisgibt etwa in öffentliche, persönliche und vertrauliche Nachrichten. Gerade hier müssen Techniken und Methoden bereitstehen, um in dieser anonymen Transparenz Informationen, die nur für spezielle Empfänger gedacht sind vor unbefugtem Zugriff zu schützen und nur denjenigen zugänglich zu machen, die dazu berechtigt sind. Diesen Wunsch hat nicht nur allgemein die Gesellschaft, sondern im speziellen wird die Entwicklung auf diesem Gebiet gerade von staatlichen und militärischen Einrichtungen gefordert und gefördert. So sind häufig eingesetzte Werkzeuge die Methoden der Kryptologie, aber solange es geheime Nachrichten gibt, wird es Angreifer geben, die versuchen, sich unberechtigten Zugang zu diesen Informationen zu verschaffen. Da die ständig wachsende Leistung von EDV-Anlagen das "Knacken" von Verschlüsselungsmethoden begünstigt, muß zu immer sichereren Chiffrierverfahren übergegangen werden. Dieser Umstand macht das Thema Kryptologie für den Moment hochaktuell und auf lange Sicht zu einem zeitlosen Forschungsgebiet der Mathematik und Informatik.

We consider three applications of impulse control in financial mathematics, a cash management problem, optimal control of an exchange rate, and portfolio optimisation under transaction costs. We sketch the different ways of solving these problems with the help of quasi-variational inequalities. Further, some viscosity solution results are presented.

Continuous and discrete superselection rules induced by the interaction with the environment are investigated for a class of exactly soluble Hamiltonian models. The environment is given by a Boson field. Stable superselection sectors can only emerge if the low frequences dominate and the ground state of the Boson field disappears due to infrared divergence. The models allow uniform estimates of all transition matrix elements between different superselection sectors.

Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

In this paper we deal with the determination of the whole set of Pareto-solutions of location problems with respect to Q general criteria.These criteria include median, center or cent-dian objective functions as particular instances.The paper characterizes the set of Pareto-solutions of a these multicriteria problems. An efficient algorithm for the planar case is developed and its complexity is established. Extensions to higher dimensions as well as to the non-convexcase are also considered.The proposed approach is more general than the previously published approaches to multi-criteria location problems and includes almost all of them as particular instances.

In a discrete-time financial market setting, the paper relates various concepts introduced for dynamic portfolios (both in discrete and in continuous time). These concepts are: value preserving portfolios, numeraire portfolios, interest oriented portfolios, and growth optimal portfolios. It will turn out that these concepts are all associated with a unique martingale measure which agrees with the minimal martingale measure only for complete markets.

Value Preserving Strategies and a General Framework for Local Approaches to Optimal Portfolios
(1999)

We present some new general results on the existence and form of value preserving portfolio strategies in a general semimartingale setting. The concept of value preservation will be derived via a mean-variance argument. It will also be embedded into a framework for local approaches to the problem of portfolio optimisation.

Discretizations for the Incompressible Navier-Stokes Equations based on the Lattice Boltzmann Method
(1999)

A discrete velocity model with spatial and velocity discretization based on a lattice Boltzmann method is considered in the low Mach number limit. A uniform numerical scheme for this model is investigated. In the limit, the scheme reduces to a finite difference scheme for the incompressible Navier-Stokes equation which is a projection method with a second order spatial discretization on a regular grid. The discretization is analyzed and the method is compared to Chorin's original spatial discretization. Numerical results supporting the analytical statements are presented.

In this paper we derive fluid dynamic equations byperforming asymptotic analysis for the generalized Boltzmann equationfor polyatomic gases. In particular, we consider the steady state,one-dimensional Boltzmann equation with one additional internal energyand different relaxation times. Moreover, we present a new approachto define coupling procedures for the Boltzmann equation and Navier-Stokesequations based on the 14-moments expansion of Levermore. These coupledmodels are validated by numerical simulations.

We consider a scale discrete wavelet approach on the sphere based on spherical radial basis functions. If the generators of the wavelets have a compact support, the scale and detail spaces are finite-dimensional, so that the detail information of a function is determined by only finitely many wavelet coefficients for each scale. We describe a pyramid scheme for the recursive determination of the wavelet coefficients from level to level, starting from an initial approximation of a given function. Basic tools are integration formulas which are exact for functions up to a given polynomial degree and spherical convolutions.

Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems
(1999)

Some inequalities for the Boltzmann collision integral are proved. These inequalities can be considered as a generalization of the well-known Povzner inequality. The inequalities are used to obtain estimates of moments of solution to the spatially homogeneous Boltzmann equation for a wide class of intermolecular forces. We obtained simple necessary and sufficient conditions (on the potential) for the uniform boundedness of all moments. For potentials with compact support the following statement is proved. .....

The paper shows that characterizing the causal relationship between significant events is an important but non-trivial aspect for understanding the behavior of distributed programs. An introduction to the notion of causality and its relation to logical time is given; some fundamental results concerning the characterization of causality are pre- sented. Recent work on the detection of causal relationships in distributed computations is surveyed. The relative merits and limitations of the different approaches are discussed, and their general feasibility is analyzed.

The Hamiltonian of the \(N\)-particle Calogero model can be expressed in terms of generators of a Lie algebra for a definite class of representations. Maintaining this Lie algebra, its representations, and the flatness of the Riemannian metric belonging to the second order differential operator, the set of all possible quadratic Lie algebra forms is investigated. For \(N = 3\) and \(N = 4\) such forms are constructed explicitly and shown to correspond to exactly solvable Sutherland models. The results can be carried over easily to all \(N\).

Trigonometric invariants are defined for each Weyl group orbit on the root lattice. They are real and periodic on the coroot lattice. Their polynomial algebra is spanned by a basis which is calculated by means of an algorithm. The invariants of the basis can be used as coordinates in any cell of the coroot space and lead to an exactly solvable model of Sutherland type. We apply this construction to the \(F_4\) case.

Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

In this paper we deal with locating a line in the plane. If d is a distance measure our objective is to find a straight line l which minimizes f(l) of g(l) (see the paper for the definition of these functions). We show that for all distance measures d derived from norms, one of the lines minimizing f(l) contains at least two of the existing facilities. For the center objective we always get an optimal line which is at maximum distance from at least three of the existing facilities. If all weights are equal, there is an optimal line which is parallel to one facet of the convex hull of the existing facilities.

In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.

Discrete Decision Problems, Multiple Criteria Optimization Classes and Lexicographic Max-Ordering
(1999)

The topic of this paper are discrete decision problems with multiple criteria. We first define discrete multiple criteria decision problems and introduce a classification scheme for multiple criteria optimization problems. To do so we use multiople criteria optimization classes. The main result is a characterization of the class of lexicographic max-ordering problems by two very useful properties, reduction and regularity. Subsequently we discuss the assumptions under which the application of this specific MCO class is justified. Finally we provide (simple) solution methods to find optimal decisions in the case of discrete multiple criteria optimization problems.

In line location problems the objective is to find a straight line which minimizes the sum of distances, or the maximum distance, respectively to a given set of existing facilities in the plane. These problems have well solved. In this paper we deal with restricted line location problems, i.e. we have given a set in the plane where the line is not allowed to pass through. With the help of a geometric duality we solve such problems for the vertical distance and then extend these results to block norms and some of them even to arbitrary norms. For all norms we give a finite candidate set for the optimal line.

In this survey we deal with the location of hyperplanes in n-dimensional normed spaces, i.e., we present all known results and a unifying approach to the so-called median hyperplane problem in Minkowski spaces. We describe how to find a hyperplane H minimizing the weighted sum f(H) of distances to a given, finite set of demand points. In robust statistics and operations research such an optimal hyperplane is called a median hyperplane.After summarizing the known results for the Euclidean and rectangular situation, we show that for all distance measures d derived from norms one of the hyperplanes minimizing f(H) is the affine hull of n of the demand points and, moreover, that each median hyperplane is a halving one (in a sense defined below) with respect to the geiven point set. Also an independence of norm result for finding optimal hyperplanes with fixed slope will be given. Furthermore we discuss how these geometric criteria can be used for algorithmical approaches to median hyperplanes, with an extra discussion for the case of polyhedral norms. And finally a characterizatio of all smooth norms by a sharpened incidence criterion for median hyperplanes is mentioned.

In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

Ramsey Numbers of K_m versus (n,k)-graphs and the Local Density of Graphs not Containing a K_m
(1999)

In this paper generalized Ramsey numbers of complete graphs K_m versus the set langle ,n,k angle of (n,k)-graphs are investigated. The value of r(K_m,langle n,k angle) is given in general for (relative to n) values of k small compared to n using a correlation with Turan numbers. These generalized Ramsey numbers con be used to determine the local densities of graphs not containing a subgraph K_m.

The Weber problem for a given finite set of existing facilities {cal E}x = {Ex_1,Ex_2, ... ,Ex_M} subset R^2 with positive weights w_m (m = 1, ... ,M) is to find a new facility X* in R^2 such that sum_{m=1}^{M} w_{m}d(X,Ex_m) is minimized for some distance function d. In this paper we consider distances defined by polyhedral gauges. A variation of this problem is obtained if barriers are introduced which are convex polygonal subsets of the plane where neither location of new facilities nor traveling is allowed. Such barriers like lakes, military regions, national parks or mountains are frequently encountered in practice.From a mathematical point of view barrier problems are difficult, since the prensence of barriers destroys the convexity of the objective function. Nevertheless, this paper establishes a descretization result: One of the grid points in the grid defined by the existing facilities and the fuundamental directions of the gauge distances can be proved to be an optimal location. Thus the barrier problem can be solved with a polynomial algorithm.

Kernel smoothing in nonparametric autoregressive schemes offers a powerful tool in modelling time series. In this paper it is shown that the bootstrap can be used for estimating the distribution of kernel smoothers. This can be done by mimicking the stochastic nature of the whole process in the bootstrap resampling or by generating a simple regression model. Consistency of these bootstrap procedures will be shown.