### Refine

#### Year of publication

- 1996 (70) (remove)

#### Document Type

- Preprint (70) (remove)

#### Keywords

- COMOKIT (2)
- CoMo-Kit (2)
- Abstraction (1)
- Boltzmann Equation (1)
- CAx Technology (1)
- CAx-Technik (1)
- CORBA (1)
- Cantor sets (1)
- Case-Based Reasoning (1)
- Collision Operator (1)

#### Faculty / Organisational entity

Abstract: We study the roughening transition of an interface in an Ising system on a 3D simple cubic lattice using a finite size scaling method. The particular method has recently been proposed and successfully tested for various solid on solid models. The basic idea is the matching of the renormalization-groupflow of the interface with that of the exactly solvable body centered cubic solid on solid model. We unambiguously confirm the Kosterlitz-Thouless nature of the roughening transition of the Ising interface. Our result for the inverse transition temperature K_R = 0.40754(5) is almost by two orders of magnitude more accurate than the estimate of Mon, Landau and Stauffer [9].

The purpose of this paper is to present the state of the art in singular optimal control. If the Hamiltonian in an interval \([t_1,t_2]\) is independent of the control we call the control in this interval singular. Singular optimal controls appear in many applications so that research has been motivated since the 1950s. Often optimal controls consist of nonsingular and singular parts where the junctions between these parts are mostly very difficult to find. One section of this work shows the actual knowledge about the location of the junctions and the behaviour of the control at the junctions. The definition and the properties of the orders (problem order and arc order), which are important in this context, are given, too. Another chapter considers multidimensional controls and how they can be treated. An alternate definition of the orders in the multidimensional case is proposed and a counterexample, which confirms a remark given in the 1960s, is given. A voluminous list of optimality conditions, which can be found in several publications, is added. A strategy for solving optimal control problems numerically is given, and the existing algorithms are compared with each other. Finally conclusions and an outlook on the future research is given.

Die Theorie der mehrdimensionalen Systeme ist ein relativ junges Forschungsgebiet innerhalb der Systemtheorie, erste Arbeiten stammen aus den 70er Jahren. Hauptmotiv für das Studium multidimensionaler Systeme war die Notwendigkeit einer Erweiterung der Theorie der digitalen Filter, die in der klassischen, eindimensionalen Signalverarbeitung (zeitabhängige Signale) Anwendung finden, auf den Bereich der Bildverarbeitung, also auf zweidimensionale Signale.; Die Vorlesung beschäftigt sich daher in ihrem ersten Teil mit skalaren zweidimensionalen Systemen und beschränkt sich im wesentlichen auf den linearen Fall. Untersucht werden zweidimensionale Filter, ihre wichtigsten Eigenschaften, Kausalität und Stabilität, sowie ihre Zustandsraum- realisierungen, etwa die Modelle von Roesser und Fornasini-Marchesini. Parallelen und Unterschiede zur eindimensionalen Systemtheorie werden betont.; Im zweiten Teil der Vorlesung werden allgemeine höherdimensionale und multivariable Systeme behandelt. Für diese Systeme erweist sich der von Jan Willems begründete Zugang zur Systemtheorie, der sogenannte behavioral approach, als zweckmäßig. Grundlegende Ideen dieses Ansatzes sowie eine der wichtigsten Methoden zum Rechnen mit Polynomen in mehreren Variablen, die Theorie der Gröbnerbasen, werden vorgestellt.

Here the almost sure convergence of one dimensional Kohonen" s algorithm in its general form, namely, 2k point neightbour setting with a non-uniform stimuli distribution is proved. We show that the asymptotic behaviour of the algorithm is governed by a cooperative system of differential equations which in general is irreducible. The system of differential equation has an asymptotically stable fixed point which a compact subset of its domain of attraction will be visited by the state variable Xn infinitely often.

For the case of the single-O(N)-vector linear sigma models the critical behaviour following from any A_k singularity in the action is worked out in the double scaling limit N->infinity, f_r -> f_r^c, 2 <= r <= k. After an exact elimination of Gaussian degrees of freedom, the critical objects such as coupling constants, indices and susceptibility matrix are derived for all A_k and spacetime dimensions 0 <= D <= 4. There appear exceptional spacetime dimensions where the degree k of the singularity A_k is more strongly constrained than by the renormalizability requirement.

In this paper we consider the problem of finding in a given graph a minimal weight subtree of connected subgraph, which has a given number of edges. These NP-hard combinatorial optimization problems have various applications in the oil industry, in facility layout and graph partitioning. We will present different heuristic approaches based on spanning tree and shortest path methods and on an exact algorithm solving the problem in polynomial time if the underlying graph is a tree. Both the edge- and node weighted case are investigated and extensive numerical results on the behaviour of the heuristics compared to optimal solutions are presented. The best heuristic yielded results within an error margin of less than one percent from optimality for most cases. In a large percentage of tests even optimal solutions have been found.

Es wird das Lernen uniform rekursiv aufzählbarer Sprachfamilien anhand guter Beispiele untersucht und Unterschiede und Gemeinsamkeiten zum Lernen von rekursiven Sprachfamilien und rekursiven Funktionen aufgezeigt. Dem verwendeten Modell liegt das Lernen von Schülern mit einem Lehrer zugrunde. Es werden verschiedene Varianten vorgestellt, verglichen und teilweise auch charakterisiert, und versucht, mit Beispielen und anderen typischen Eigenschaften ein Gefühl für die Leistungsfähigkeit zu vermitteln. Unter anderem wird gezeigt, dass es nicht immer "universelle" gute Beispiele gibt, mit denen eine Sprachklasse in allen Situationen erklärt werden kann.

We present a similarity criterion based on feature weighting. Feature weights are recomputed dynamically according to the performance of cases during problem solving episodes. We will also present a novel algorithm to analyze and explain the performance of the retrieved cases and to determine the features whose weights need to be recomputed. We will perform experiments and show that the integration in a feature weighting model of our similarity criterion with our analysis algorithm improves the adaptability of the retrieved cases by converging to best weights for the features over a period of multiple problem solving episodes.

Planning for manufacturing workpieces is a complex task that requires the interaction of a domain-specific reasoner and a generic planning mechanism. In this paper we present an architecture for organizing the case base that is based on the information provided by a generic problem solver. A retrieval procedure is then presented that uses the information provided by the domain-specific reasoner in order to improve the accuracy of the cases retrieved. However, it is not realistic to suppose that the case retrieved will entirely fit into the new problem. We present a replay procedure to obtain a partial solution that replays not only the valid decisions taken for solving the case, but also justifications of rejected decisions made during the problem solving process. As a result, those completion alternatives of the partial solution are discarded that are already known to be invalid from the case.

Complete Eager Replay
(1996)

We present an algorithm for completely replaying previous problem solving experiences for plan-space planners. In our approach not only the solution trace is replayed, but also the explanations of failed attempts made by the first-principle planner. In this way, the capability of refitting previous solutions into new problems is improved.

Planning for realistic problems in a static and deterministic environment with complete information faces exponential search spaces and, more often than not, should produce plans comprehensible for the user. This article introduces new planning strategies inspired by proof planning examples in order to tackle the search-space-problem and the structured-plan-problem. Island planning and refinement as well as subproblem refinement are integrated into a general planning framework and some exemplary control knowledge suitable for proof planning is given.

Mit der schnellen Verbreitung der CAx-Techniken in der deutschen Automobilindustrie wächst die Notwendigkeit einer besseren Integration der CAx-Systeme in die Prozeßketten und der Beherrschung der Produktinformationsflüsse. Aufgrund dieser Tatsachen ist in den letzten Jah-ren ein Wandel der CAx-Systemarchitekturen von geschloßenen, monolithischen zu offen inte-grierten Systemen erkennbar. Im folgenden wird dieser Prozeß sowie dessen Implikationen auf die Anwendung und auf die Systemhersteller analysiert. Ausgehend von der Initiative der deutschen Automobilindustrie wurde das Projekt ANICA (Analysis of Interfaces of various CAD/CAM-Systems) gestartet. In diesem Projekt werden die Schnittstellen zu den Systemkernen einiger CAx-Hersteller untersucht und ein Konzept für kooperierende CAx-Systeme in der Automobilindustrie wird entwickelt.

In the past years, development and production processes in many companies have changed in a revolutionary way, leading to new demands in information and CAx technology. The R&D-departments of the German automotive industry installed a working group to develop a common long term CAD/CAM strategy1. A preliminary result is the concept for an open CAx system architecture as a basis for realizing industrial requirements on CAD/ CAM and for the cooperation with system vendors. The project ANICA was started in cooperation with five international CAD/CAM -suppliers in order to show the feasibility of this architecture. The access interfaces of different system kernels are analysed with the aim of developing a concept for a cooperating CAx system network. The concept will be put into practice with a software prototype basing on CORBA and OLE. The communication elements within such an architecture have to go far beyond conventional CAD data. This will lead to an extension of "feature" concepts including CAx functionality and dynamic information about the process chain of a product. The impact on modern concepts for user interfaces, on reverse engineering methods and on product data models will be discussed to finally close the loop to industrial CAx application.

Representations of activities dealing with the development or maintenance of software are called software process models. Process models allow for communication, reasoning, guidance, improvement, and automation. Two approaches for building, instantiating, and managing processes, namely CoMo-Kit and MVP-E, are combined to build a more powerful one. CoMo-Kit is based on AI/KE technology; it was developed for supporting complex design processes and is not specialized to software development processes. MVP-E is a process-sensitive software engineering environment for modeling and analyzing software development processes, and guides software developers. Additionally, it provides services to establish and run measurement programmes in software organizations. Because both approaches were developed completely independently major integration efforts are to be made to combine their both advantages. This paper concentrates on the resulting language concepts and their operationalization necessary for building automated process support.

A combination of a state-based formalism and a temporal logic is proposed to get an expressive language for various descriptions of reactive systems. Thereby it is possible to use a model as well as a property oriented specification style in one description. The descriptions considered here are those of the environment, the specification, and the design of a reactive system. It is possible to express e.g. the requirements of a reactive system by states and transitions between them together with further temporal formulas restricting the behaviors of the statecharts. It is shown, how this combined formalism can be used: The specification of a small example is given and a designed controller is proven correct with respect to this specification. The combination of the langugages is based on giving a temporal semantics of a state-based formalism (statecharts) using a temporal logic (TLA).

This article will discuss a qualitative, topological and robust world-modelling technique with special regard to navigation-tasks for mobile robots operating in unknownenvironments. As a central aspect, the reliability regarding error-tolerance and stability will be emphasized. Benefits and problems involved in exploration, as well as in navigation tasks, are discussed. The proposed method demands very low constraints for the kind and quality of the employed sensors as well as for the kinematic precision of the utilized mobile platform. Hard real-time constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot

In the present paper a general criticism of kinetic equations for vehicular traffic is given. The necessity of introducing an Enskog-type correction into these equations is shown. An Enskog-line kinetic traffic flow equation is presented and fluid dynamic equations are derived. This derivation yields new coefficients for the standard fluid dynamic equations of vehicular traffic. Numerical simulations for inhomogeneous traffic flow situations are shown together with a comparison between kinetic and fluid dynamic models.

The paper presents some new estimates on the gain term of the Boltzmann collision operator. For Maxwellian molecules, it is shown that the L -norm of the gain term can be bounded in terms of the L1 and L -norm of the density function f. In the case of more general collision kernels, like the hard-sphere interaction potential, the gain term is estimated pointwise by the L -norm of the density function and the loss term of the Boltzmann collision operator.

The paper presents some adaptive load balance techniques for the simulation of rarefied gas flows on parallel computers. It is shown that a static load balance is insufficient to obtain a scalable parallel efficiency. Hence, two adaptive techniques are investigated which are based on simple algorithms. Numerical results show that using heuristic techniques one can achieve a sufficiently high efficiency over a wide range of different hardware platforms.

t is well-known that for the integral group ring of a polycyclic group several decision problems are decidable. In this paper a technique to solve themembership problem for right ideals originating from Baumslag, Cannonito and Miller and studied by Sims is outlined. We want to analyze, how thesedecision methods are related to Gröbner bases. Therefore, we define effective reduction for group rings over Abelian groups, nilpotent groups and moregeneral polycyclic groups. Using these reductions we present generalizations of Buchberger's Gröbner basis method by giving an appropriate definition of"Gröbner bases" in the respective setting and by characterizing them using concepts of saturation and s-polynomials.

We present a novel approach to classification, based on a tight coupling of instancebased learning and a genetic algorithm. In contrast to the usual instance-based learning setting, we do not rely on (parts of) the given training set as the basis of a nearestneighbor classifier, but we try to employ artificially generated instances as concept prototypes. The extremely hard problem of finding an appropriate set of concept prototypes is tackled by a genetic search procedure with the classification accuracy on the given training set as evaluation criterion for the genetic fitness measure. Experiments with artificial datasets show that - due to the ability to find concise and accurate concept descriptions that contain few, but typical instances - this classification approach is considerably robust against noise, untypical training instances and irrelevant attributes. These favorable (theoretical) properties are corroborated using a number of hard real-world classification problems.

Fallbasiertes Schliessen (engl.: Case-based Reasoning) hat in den vergangenen Jahren zunehmende Bedeutung für den praktischen Einsatz in realen Anwendungsbereichen erlangt. In dieser Arbeit werden zunächst die allgemeine Vorgehensweise und die verschiedenen Teilaufgaben des fallbasierten Schliessens vorgestellt. Anschliessend wird auf die charakteristischen Eigenschaften eines Anwendungsbereiches eingegangen und an der konkreten Aufgabe der Kreditwürdigkeitsprüfung die Realisierung eines fallbasierten Ansatzes in der Finanzwelt beschrieben.

This paper addresses the role of abstraction in case-based reasoning. We develop a general framework for reusing cases at several levels of abstraction, which is particularly suited for describing and analyzing existing and designing new approaches of this kind. We show that in synthetic tasks (e.g. configuration, design, and planning), abstraction can be successfully used to improve the efficiency of similarity assessment, retrieval, and adaptation. Furthermore, a case-based planning system, called Paris, is described and analyzed in detail using this framework. An empirical study done with Paris demonstrates significant advantages concerning retrieval and adaptation efficiency as well as flexibility of adaptation. Finally, we show how other approaches from the literature can be classified according to the developed framework.

This paper is to present a new algorithm, called KNNcost, for learning feature weights for CBR systems used for classification. Unlike algorithms known so far, KNNcost considers the profits of a correct and the cost of a wrong decision. The need for this algorithm is motivated from two real-world applications, where cost and profits of decisions play a major role. We introduce a representation of accuracy, cost and profits of decisions and define the decision cost of a classification system. To compare accuracy optimization with cost optimization, we tested KNNacc against KNNcost. The first one optimizes classification accuracy with a conjugate gradient algorithm. The second one optimizes the decision cost of the CBR system, respecting cost and profits of the classifications. We present experiments with these two algorithms in a real application to demonstrate the usefulness of our approach.

When problems are solved through reasoning from cases, the primary kind of knowledge is contained in the specific cases which are stored in the case base. However, in many situations additional background-knowledge is required to cope with the requirements of an application. We describe an approach to integrate such general knowledge into the reasoning process in a way that it complements the knowledge contained in the cases. This general knowledge itself is not sufficient to perform any kind of model-based problem solving, but it is required to interpret the available cases appropriately. Background knowledge is expressed by two different kinds of rules that both must be formalized by the knowledge engineer: Completion rules describe how to infer additional features out of known features of an old case or the current query case. Adaptation rules describe how an old case can be adapted to fit the current query. This paper shows how these kinds of rules can be integrated into an object-oriented case representation.

In this paper we describe how explicit models of software or knowledge engineering processes can be used to guide and control the distributed development of complex systems. The paper focuses on techniques which automatically infer dependencies between decisions from a process model and methods which allow to integrate planning and execution steps. Managing dependencies between decisions is a basis for improving the traceability of develop- ment processes. Switching between planning and execution of subprocesses is an inherent need in the development of complex systems. The paper concludes with a description of the CoMo-Kit system which implements the technolo- gies mentioned above and which uses WWW technology to coordinate development processes. An on-line demonstration of the system can be found via the CoMo-Kit homepage:

Paris (Plan Abstraction and Refinement in an Integrated System) [4, 2] is a domain independent case-based planning system which allows the flexible reuse of planning cases by abstraction and refinement. This approach is mainly inspired by the observation that reuse of plans must not be restricted to a single description level. In domains with a high variation in the problems, the reuse of past solutions must be achieved at various levels of abstraction.

EADOCS (Expert Assisted Design of Composite Structures) is the implementation of a multi-level approach to conceptual design. Constraint-, case- and rule-based reasoning techniques are applied in different design phases to assemble and adapt designs at increasing levels of detail. This paper describes a strategic approach to decomposition, formulation of target design problems, and incremental retrieval and adaptation. Design problems considered, cannot be decomposed dynamically into tractable subproblems. Design cases are retrieved for requirements and preferences on both functionality and the solution. Cases are adapted in three phases: adaptation, modification and optimisation.

Erstellung eines Software-Monitors zur Analyse automatisch generierte Protokollimplementierungen
(1996)

Toying with Jordan matrices
(1996)

A new look at the RST model
(1996)

The RST model is augmented by the addition of a scalar field and a boundary term so that it is well-posed and local. Expressing the RST action in terms of the ADM formulation, the constraint structure can be analysed completely. It is shown that from the view point of local field theories, there exists a hidden dynamical field 1 in the RST model. Thanks to the presence of this hidden dynamical field, we can reconstruct the closed algebra of the constraints which guarantee the general invariance of the RST action. The resulting stress tensors TSigma Sigma are recovered to be true tensor quantities. Especially, the part of the stress tensors for the hidden dynamical field 1 gives the precise expression for tSigma . At the quantum level, the cancellation condition for the total central charge is reexamined. Finally, with the help of the hidden dynamical field 1, the fact that the semi-classical static soluti on of the RST model has two independent parameters (P,M), whereas for the classical CGHS model there is only one, can be explained.

Significance of zero modes in path-integral quantization of solitonic theories with BRST invariance
(1996)

The significance of zero modes in the path-integral quantization of some solitonic models is investigated. In particular a Skyrme-like theory with topological vortices in (1 + 2) dimensions is studied, and with a BRST invariant gauge fixing a well defined transition amplitude is obtained in the one loop approximation. We also present an alternative method which does not necessitate evoking the time-dependence in the functional integral, but is equivalent to the original one in dealing with the quantization in the background of the static classical solution of the non-linear field equations. The considerations given here are particularly useful in - but also limited to -the one-loop approximation.

The constraint structure of the induced 2D-gravity with the Weyl and area-preserving diffeomorphism invariances is analysed in the ADM formulation. It is found that when the area-preserving diffeomorphism constraints are kept, the usual conformal gauge does not exist, whereas there is the possibility to choose the so-called "quasi-light-cone" gauge, in which besides the area-preserving diffeomorphism invariance, the reduced Lagrangian also possesses the SL(2,R) residual symmetry. This observation indicates that the claimed correspondence between the SL(2,R) residual symmetry and the area-preserving diffeomorphism invariance in both regularisation approaches does not hold. The string-like approach is then applied to quantise this model, but a fictitious non-zero central charge in the Virasoro algebra appears. When a set of gauge-independent SL(2,R) current-like fields is introduced instead of the string-like variables, a consistent quantum theory is obtained, which means that the area-preserving diffeomorphism invariance can be maintained at the quantum level.

The Lagrangian field-antifield formalism of Batalin and Vilkovisky (BV) is used to investigate the application of the collec- tive coordinate method to soliton quantisation. In field theories with soliton solutions, the Gaussian fluctuation operator has zero modes due to the breakdown of global symmetries of the Lagrangian in the soliton solutions. It is shown how Noether identities and local symmetries of the Lagrangian arise when collective coordinates are introduced in order to avoid divergences related to these zero modes. This transformation to collective and fluctuation degrees of freedom is interpreted as a canonical transformation in the symplectic field-antifield space which induces a time-local gauge symmetry. Separating the corresponding Lagrangian path integral of the BV scheme in lowest order into harmonic quantum fluctuations and a free motion of the collective coordinate with the classical mass of the soliton, we show how the BV approach clarifies the relation between zero modes, collective coordinates, gauge invariance and the center- of-mass motion of classical solutions in quantum fields. Finally, we apply the procedure to the reduced nonlinear O(3) oe-model.^L

Quantum tunneling between degenerate ground states through the central barrier of a potential is extended to excited states with the instanton method. This extension is achieved with the help of an LSZ reduction technique as in field theory and may be of importance in the study of macroscopic quantum phenomena in magnetic systems.

Starting from the coherent state representation of the evolution operator with the help of the path-integral, we derive a formula for the low-lying levels E = ffl0 Gamma 24ffl cos(s + ,)ss of a quantum spin system. The quenching of macroscopic quantum coherence is understood as the vanishing of cos(s + ,)ss in disagreement with the suppression of tunneling (i.e. 4ffl = 0) as claimed in the literature. A new configuration called the macroscopic Fermi-particle is suggested by the character of its wave function. The tunne- ling rate ( 24fflss ) does not vanish, not for integer spin s nor for a half-integer value of s, and is calculated explicitly (for the position dependent mass) up to the one-loop approximation.

We extend the methods of geometric invariant theory to actions of non reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non recutive. Given a linearization of the natural actionof the group Aut(E)xAut(F) on Hom(E,F), a homomorphism iscalled stable if its orbit with respect to the unipotentradical is contained in the stable locus with respect to thenatural reductive subgroup of the automorphism group. Weencounter effective numerical conditions for a linearizationsuch that the corresponding open set of semi-stable homomorphismsadmits a good and projective quotient in the sense of geometricinvariant theory, and that this quotient is in additiona geometric quotient on the set of stable homomorphisms.

Some formulae, containing logarithmic derivatives of (smooth) measures on infinitedimensional spaces, arise in quite different situations. In particular, logarithmic derivatives of a measure are inserted in the Schr"odinger equastion in the space consisting of functions that are square integrable with respect to this measure, what allows us to describe very simply a procedure of (canonical) quantization of infinite-dimensional Hamiltonian systems with the linear phase space. Further, the problem of reconstructing of a measure by its logarithmic derivative (that was posed in [1] independently of any applications) can be equivalent either to the problem of finding the "ground state" (considered as some measure) for infinite-dimensional Schr"odinger equation, or to the problem of finding an invariant measure for a stochastic differential equation (that is a central question of so-called stochastic quantization), or to the problem of recenstruc ting "Gibbsian measure by its specification" (i.e. by a collection of finite-dimensional conditional distributions). Logarithmic derivatives of some measure appear in Cameron-Martin-Girsanov-Maruyama formulae and in its generalizations related to arbitrary smooth measures; they allow also to connect these formulae and the Feynman-Kac formulae. This note discusses all these topics. Of course due to its shortness the presentation is formal in main, and precise analitical assumptions are usually absent. Actually only a list of formulae with small comments is given. Let us mention also that we do not consider at all so-called Dirichlet forms to which a great deal of literature is devoted (cf. [3] and references therein to the works of S. Alberion and others).