### Refine

#### Year of publication

#### Document Type

- Preprint (159) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Physik (159) (remove)

Abstract: We study the roughening transition of an interface in an Ising system on a 3D simple cubic lattice using a finite size scaling method. The particular method has recently been proposed and successfully tested for various solid on solid models. The basic idea is the matching of the renormalization-groupflow of the interface with that of the exactly solvable body centered cubic solid on solid model. We unambiguously confirm the Kosterlitz-Thouless nature of the roughening transition of the Ising interface. Our result for the inverse transition temperature K_R = 0.40754(5) is almost by two orders of magnitude more accurate than the estimate of Mon, Landau and Stauffer [9].

Abstract: This paper presents a solution to a problem from superanalysis about the existence of Hilbert-Banach superalgebras. Two main results are derived: 1) There exist Hilbert norms on some graded algebras (infinite-dimensional superalgebras included) with respect to which the multiplication is continuous. 2) Such norms cannot be chosen to be submultiplicative and equal to one on the unit of the algebra.

Abstract: Random matrix theory (RMT) is a powerful statistical tool to model spectral fluctuations. In addition, RMT provides efficient means to separate different scales in spectra. Recently RMT has found application in quantum chromodynamics (QCD). In mesoscopic physics, the Thouless energy sets the universal scale for which RMT applies. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator with staggered fermions and SU_(2) lattice gauge fields. Comparing lattice data with RMT predictions we find deviations which allow us to give an estimate for this scale.

Beyond the Thouless energy
(1999)

Abstract: The distribution and the correlations of the small eigenvalues of the Dirac operator are described by random matrix theory (RMT) up to the Thouless energy E_= 1 / sqrt (V), where V is the physical volume. For somewhat larger energies, the same quantities can be described by chiral perturbation theory (chPT). For most quantities there is an intermediate energy regime, roughly 1/V < E < 1/sqrt (V), where the results of RMT and chPT agree with each other. We test these predictions by constructing the connected and disconnected scalar susceptibilities from Dirac spectra obtained in quenched SU(2) and SU(3) simulations with staggered fermions for a variety of lattice sizes and coupling constants. In deriving the predictions of chPT, it is important totake into account only those symmetries which are exactly realized on the lattice.

Abstract: Recently, the chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that the deviations of lattice results from random matrix theory starting around the so-called Thouless energy can be understood in terms of chiral perturbation theory as well. Comparison of lattice data with chiral perturbation theory formulae allows us to compute the pion decay constant. We present results from a calculation for quenched SU(2) with Kogut-Susskind fermions at ß = 2.0 and 2.2.

Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

Abstract: Random Matrix Theory (RMT) is a powerful statistical tool to model spectral fluctuations. This approach has also found fruitful application in Quantum Chromodynamics (QCD). Importantly, RMT provides very efficient means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator for staggered fermions from SU(2) lattice gauge theory for different lattice size and gauge couplings. We focus on the bulk of the spectrum. In disordered systems, the Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is discussed. Moreover, we work out higher order correlators as well, in particular three-point correlation functions.

Abstract: Local field effects on the rate of spontaneous emission and Lamb shift in a dense gas of atoms are discussed taking into account correlations of atomic center-of-mass coordinates. For this the exact retarded propagator in the medium is calculated in independent scattering approximation and employing a virtual-cavity model. The resulting changes of the atomic polarizability lead to modi cations of the medium response which can be of the same order of magnitude but of opposite sign than those due to local field corrections of the dielectric function derived by Morice, Castin, and Dalibard [Phys.Rev.A 51, 3896 (1995)].

Abstract: We identify form-stable coupled excitations of light and matter ("dark-state polaritons") associated with the propagation of quantum fields in Electromagnetically Induced Transparency. The properties of the dark-state polaritons such as the group velocity are determined by the mixing angle between light and matter components and can be controlled by an external coherent field as the pulse propagates. In particular, light pulses can be decelerated and "trapped" in which case their shape and quantum state are mapped onto metastable collective states of matter. Possible applications of this reversible coherent-control technique are discussed.

Abstract: We analyze systematic (classical) and fundamental (quantum) limitations of the sensitivity of optical magnetometers resulting from ac-Stark shifts. We show that incontrast to absorption-based techniques, the signal reduction associated with classical broadening can be compensated in magnetometers based on phase measurements using electromagnetically induced transparency (EIT). However due to ac-Stark associated quantum noise the signal-to-noise ratio of EIT-based magnetometers attains a maximum value at a certain laser intensity. This value is independent on the quantum statistics of the light and defines a standard quantum limit of sensitivity. We demonstrate that an EIT-based optical magnetometer in Faraday configuration is the best candidate to achieve the highest sensitivity of magnetic field detection and give a detailed analysis of such a device.

Abstract: Generalized single-atom Maxwell-Bloch equations for optically dense media are derived taking into account non-cooperative radiative atom-atom interactions. Applying a Gaussian approximation and formally eliminating the degrees of freedom of the quantized radiation field and of all but a probe atom leads to an effective time-evolution operator for the probe atom. The mean coherent amplitude of the local field seen by the atom is shown to be given by the classical Lorentz-Lorenz relation. The second-order correlations of the field lead to terms that describe relaxation or pump processes and level shifts due to multiple scattering or reabsorption of spontaneously emitted photons. In the Markov limit a non-linear and nonlocal single-atom density matrix equation is derived. To illustrate the effects of the quantum corrections we discuss amplified spontaneous emission and radiation trapping in a dense ensemble of initially inverted two-level atoms and the effects of radiative interactions on intrinsic optical bistability in coherently driven systems.

Abstract: We predict the possibility of sharp, high-contrast resonances in the optical response of a broad class of systems, wherein interference effects are generated by coherent perturbation or interaction of dark states. The properties of these resonances can be manipulated to design a desired atomic response.

Thermal Properties of Interacting Bose Fields and Imaginary-Time Stochastic Differential Equations
(1998)

Abstract: Matsubara Green's functions for interacting bosons are expressed as classical statistical averages corresponding to a linear imaginary-time stochastic differential equation. This makes direct numerical simulations applicable to the study of equilibrium quantum properties of bosons in the non-perturbative regime. To verify our results we discuss an oscillator with quartic anharmonicity as a prototype model for an interacting Bose gas. An analytic expression for the characteristic function in a thermal state is derived and a Higgs-type phase transition discussed, which occurs when the oscillator frequency becomes negative.

Abstract: We describe a general technique that allows for an ideal transfer of quantum correlations between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss possible applications such as quantum state memories, generation of squeezed atomic states, preparation of entangled atomic ensembles and quantum information processing.

Abstract: We show that it is possible to "store" quantum states of single-photon fields by mapping them onto collective meta-stable states of an optically dense, coherently driven medium inside an optical resonator. An adiabatic technique is suggested which allows to transfer non-classical correlations from traveling-wave single-photon wave-packets into atomic states and vise versa with nearly 100% efficiency. In contrast to previous approaches involving single atoms, the present technique does not require the strong coupling regime corresponding to high-Q micro-cavities. Instead, intracavity Electromagnetically Induced Transparency is used to achieve a strong coupling between the cavity mode and the atoms.

Mirrorless oscillation based on resonantly enhanced 4-wave mixing: All-order analytic solutions
(1999)

Abstract: The phase transition to mirrorless oscillation in resonantly enhanced four-wave mixing in double-A systems are studied analytically for the ideal case of infinite lifetimes of ground-state coherences. The stationary susceptibilities are obtained in all orders of the generated fields and analytic solutions of the coupled nonlinear differential equations for the field amplitudes are derived and discussed.

Abstract: We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four wave mixing in a coherently driven dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that due to the large group velocity delays associated with coherent media, an extremely narrow oscillator linewidth is possible, making a narrow-band source of non-classical radiation feasible.

Abstract: We utilize the generation of large atomic coherence to enhance the resonant nonlinear magneto-optic effect by several orders of magnitude, thereby eliminating power broadening and improving the fundamental signal-to-noise ratio. A proof-of-principle experiment is carried out in a dense vapor of Rb atoms. Detailed numerical calculations are in good agreement with the experimental results. Applications such as optical magnetometry or the search for violations of parity and time reversal symmetry are feasible.

Abstract: Spontaneous emission and Lamb shift of atoms in absorbing dielectrics are discussed. A Green's-function approach is used based on the multipolar interaction Hamiltonian of a collection of atomic dipoles with the quantised radiation field. The rate of decay and level shifts are determined by the retarded Green's-function of the interacting electric displacement field, which is calculated from a Dyson equation describing multiple scattering. The positions of the atomic dipoles forming the dielectrics are assumed to be uncorrelated and a continuum approximation is used. The associated unphysical interactions between different atoms at the same location is eliminated by removing the point-interaction term from the free-space Green's-function (local field correction). For the case of an atom in a purely dispersive medium the spontaneous emission rate is altered by the well-known Lorentz local-field factor. In the presence of absorption a result different from previously suggested expressions is found and nearest-neighbour interactions are shown to be important.

Abstract: We investigate the quantum properties of fields generated by resonantly enhanced wave mixing based on atomic coherence in Raman systems. We show that such a process can be used for generation of pairs of Stokes and anti-Stokes fields with nearly perfect quantum correlations, yielding almost complete (i.e. 100%) squeezing without the use of a cavity. We discuss the extension of the wave mixing interactions into the domain of a few interacting light quanta.

Abstract: Resonant optical pumping in dense atomic media is discussed, where the absorption length is less than the smallest characteristic dimension of the sample. It is shown that reabsorption and multiple scattering of spontaneous photons (radiation trapping) can substantially slow down the rate of optical pumping. A very slow relaxation out of the target state of the pump process is then sufficient to make optical pumping impossible. As model systems an inhomogeneously and a radiatively broadened 3-level system resonantly driven with a strong broad-band pump field are considered.

Abstract: We show that the physical mechanism of population transfer in a 3-level system with a closed loop of coherent couplings (loop-STIRAP) is not equivalent to an adiabatic rotation of the dark-state of the Hamiltonian but coresponds to a rotation of a higher-order trapping state in a generalized adiabatic basis. The concept of generalized adiabatic basis sets is used as a constructive toolto design pulse sequences for stimulated Raman adiabatic passage (STIRAP) which give maximum population transfer also under conditions when the usual condition of adiabaticty is only poorly fulfilled. Under certain conditions for the pulses (generalized matched pulses) there exists a higher-order trapping state, which is an exact constant of motion and analytic solutions for the atomic dynamics can be derived.

Abstract: We analyze the long-time quantum dynamics of degenerate parametric down-conversion from an initial sub-harmonic vacuum (spontaenous down-conversion). Standard linearization of the Heisenberg equations of motions fails in this case, since it is based on an expansion around an unstable classical solution and neglects pump depletion. Introducing a mean-field approximation we find a periodic exchange of energy between the pump and subharmonic mode goverened by an anharmonic pendulum equation. From this equation the optimum interaction time or crystal length for maximum conversion can be determined. A numerical integration of the 2-mode Schrödinger equation using a dynamically optimized basis of displaced and squeezed number states verifies the characteristic times predicted by the mean-field approximation. In contrast to semiclassical and mean-field predictions it is found that quantum uctuations of the pump mode lead to a substantial limitation of the efficiency of parametric down-conversion.

In this work, we discuss the resonance states of a quantum particle in a periodic potential plus static force. Originally this problem was formulated for a crystalline electron subject to the static electric field and is known nowadays as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and, in this sense, solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems like optical or semiconductor superlattices.

Abstract: We describe quantum-field-theoretical (QFT) techniques for mapping quantum problems onto c-number stochastic problems. This approach yields results which are identical to phase-space techniques [C.W. Gardiner, Quantum Noise (1991)] when the latter result in a Fokker-Planck equation for a corresponding pseudo-probability distribution. If phase-space techniques do not result in a Fokker-Planck equation and hence fail to produce a stochastic representation, the QFT techniques nevertheless yield stochastic di erence equations in discretised time.

Abstract: We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as non-classical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.

Abstract: The recently proposed idea to generate entanglement between photon states via exchange interactions in an ensemble of atoms (J. D. Franson and T. B. Pitman, Phys. Rev. A 60 , 917 (1999) and J. D. Franson et al., (quant- ph/9912121)) is discussed using an S -matix approach. It is shown that if the nonlinear response of the atoms is negligible and no additional atom-atom interactions are present, exchange interactions cannot produce entanglement between photons states in a process that returns the atoms to their initial state. Entanglement generation requires the presence of a nonlinear atomic response or atom-atom interactions.

We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman - Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.

Abstract: The effect of intracavity Electromagnetically Induced Transparency on the properties of optical resonators and active laser devices is discussed theoretically. A pronounced frequency pulling and cavity linewidth narrowing are predicted. The effect can be used to substantially reduce classical and quantum phase noise of the beat-note of optical oscillators. Fundamental limits of this stabilization mechanism are discussed as well as its potential application to high-resolution spectroscopy.

Introduction: Recent developments in quantum communication and computing [1-3] stimulated an intensive search for physical systems that can be used for coherent processing of quantum information. It is generally believed that quantum entanglement of distinguishable quantum bits (qubits) is at the heart of quantum information processing. Significant efforts have been directed towards the design of elementary logic gates, which perform certain unitary processes on pairs of qubits. These gates must be capable of generating specific, in general entangled, superpositions of the two qubits and thus require a strong qubit-qubit interaction. Using a sequence of single and two-bit operations, an arbitrary quantum computation can be performed [2]. Over the past few years many systems have been identified for potential implementations of logic gates and several interesting experiments have been performed. Proposals for strong qubit-qubit interaction involve e.g. the vibrational coupling of cooled trapped ions [4], near dipole-dipole or spin-spin interactions such as in nuclear magnetic resonance [5], collisional interactions of confined cooled atoms [6] or radiative interactions between atoms in cavity QED [7]. The possibility of simple preparation and measurement of qubit states as well as their relative insensitivity to a thermal environment makes the latter schemes particularly interesting for quantum information processing. Most theoretical proposals on cavity-QED systems focus on fundamental systems involving a small number of atoms and few photons. These systems are sufficiently simple to allow for a first-principle description. Their experimental implementation is however quite challenging. For example, extremely high-Q micro-cavities are needed to preserve coherence during all atom-photon interactions. Furthermore, single atoms have to be confined inside the cavities for a sufficiently long time. This requires developments of novel cooling and trapping techniques, which is in itself a fascinating direction of current research. Despite these technical obstacles, a remarkable progress has been made in this area: quantum processors consisting of several coupled qubits now appear to be feasible.

Abstract: We aim to establish a link between path-integral formulations of quantum and classical field theories via diagram expansions. This link should result in an independent constructive characterisation of the measure in Feynman path integrals in terms of a stochastic differential equation (SDE) and also in the possibility of applying methods of quantum field theory to classical stochastic problems. As a first step we derive in the present paper a formal solution to an arbitrary c-number SDE in a form which coincides with that of Wick's theorem for interacting bosonic quantum fields. We show that the choice of stochastic calculus in the SDE may be regarded as a result of regularisation, which in turn removes ultraviolet divergences from the corresponding diagram series.

We show that the solution to an arbitrary c-number stochastic differential equation (SDE) can be represented as a diagram series. Both the diagram rules and the properties of the graphical elements reflect causality properties of the SDE and this series is therefore called a causal diagram series. We also discuss the converse problem, i.e. how to construct an SDE of which a formal solution is a given causal diagram series. This then allows for a nonperturbative summation of the diagram series by solving this SDE, numerically or analytically.

Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

We present results from a study of the coherence properties of a system involving three discrete states coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension of the standard laser-induced continuum structure (LICS) which involves two discrete states and two lasers. We show that in the tripod scheme, there exist two population trapping conditions; in some cases these conditions are easier to satisfy than the single trapping condition in two-state LICS. Depending on the pulse timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the solution for coincident pulses, the behaviour of the system in the adiabatic limit for delayed pulses, the conditions for no ionization and for maximal ionization, and the optimal conditions for population transfer between the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the continuum, the population dynamics reduces to a standard two-state LICS problem (involving the other two states) with modified parameters; this provides the opportunity to customize the parameters of a given two-state LICS system.

Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
(2000)

Both theoretical and experimental results for the dynamics of photoexcited electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and Ni are presented. A model for the dynamics of excited electrons is developed, which is based on the Boltzmann equation and includes effects of photoexcitation, electron-electron scattering, secondary electrons (cascade and Auger electrons), and transport of excited carriers out of the detection region. From this we determine the time-resolved two-photon photoemission (TR-2PPE). Thus a direct comparison of calculated relaxation times with experimental results by means of TR-2PPE becomes possible. The comparison indicates that the magnitudes of the spin-averaged relaxation time t and of the ratio t_up/t_down of majority and minority relaxation times for the different ferromagnetic transition metals result not only from density-of-states effects, but also from different Coulomb matrix elements M. Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.

Abstract: In this paper we present a renormalizability proof for spontaneously broken SU (2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormalization group adapted to perturbation theory. The power counting part of the proof, which is conceptually and technically simple, follows the same lines as that for any other renormalizable theory. The main difficulty stems from the fact that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the Slavnov-Taylor identities of SU (2) Yang-Mills theory on which the gauge invariance of the renormalized theory is based.

Abstract: We analyse 4-dimensional massive "phi" ^ 4 theory at finite temperature T in the imaginary-time formalism. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of the loop expansion. Our main point is to show that the counterterms can be chosen temperature independent, so that the temperature flow of the relevant parameters as a function of T can be followed. Our result confirms the experience from explicit calculations to the leading orders. The proof is based on flow equations, i.e. on the (perturbative) Wilson renormalization group. In fact we will show that the difference between the theories at T > 0 and at T = 0 contains no relevant terms. Contrary to BPHZ type formalisms our approach permits to lay hand on renormalization conditions and counterterms at the same time, since both appear as boundary terms of the renormalization group flow. This is crucial for the proof.

Abstract: Let H_1 , H_2 be complex Hilbert spaces, H be their Hilbert tensor product and let tr_2 be the operator of taking the partial trace of trace class operators in H with respect to the space H_2 . The operation tr_2 maps states in H (i.e. positive trace class operators in H with trace equal to one) into states in H_1 . In this paper we give the full description of mappings that are linear right inverse to tr_2 . More precisely, we prove that any affine mapping F(W) of the convex set of states in H_1 into the states in H that is right inverse to tr_2 is given by W -> W x D for some state D in H_2 . In addition we investigate a representation of the quantum mechanical state space by probability measures on the set of pure states and a representation - used in the theory of stochastic Schrödinger equations - by probability measures on the Hilbert space. We prove that there are no affine mappings from the state space of quantum mechanics into these spaces of probability measures.

Abstract: It is shown that nonvacuum pseudoparticles can account forquantum tunneling and metastability. In particular the saddle-point nature of the pseudoparticles is demonstrated, and the evaluation of path-integrals in their neighbourhood. Finally the relation between instantons and bounces is used to derive a result conjectured by Bogomolny andFateyev.

Abstract: The behavior of the divergent part of the bulk AdS/CFT effective action is considered with respect to the special finite diffeomorphism transformations acting on the boundary as a Weyl transformation of the boundary metric. The resulting 1-cocycle of the Weyl group is in full agreement with the 1-cocycle of the Weyl group obtained from the cohomological consideration of the effective action of the corresponding CFT.

Abstract: The classification of quasi - primary fields is outlined. It is proved that the only conserved quasi - primary currents are the energy - momentum tensor and the O(N)-Noether currents. Derivation of all quasi - primary fields and the resolution of degeneracy is sketched. Finally the limits d = 2 and d = 4 of the space dimension are discussed. Whereas the latter is trivial the former is only almost so. (To appear in the Proceedings of the XXII Conference on Differential Geometry Methods in Theoretical Physics, Ixtapa, Mexico, September 20-24, 1993)

Abstract: Operator product expansions are applied to dilaton-axion four-point functions. In the expansions of the bilocal fields "doubble Phi", CC and "Phi"C, the conformal fields which are symmetric traceless tensors of rank l and have dimensions "delta" = 2+l or 8+l+ "eta"(l) and "eta"(l) = O(N ^ -2) are identified. The unidentified field have dimension "delta" = "lambda"+l+eta(l) with "lambda" >= 10. The anomalous dimensions eta(l) are calculated at order O(N ^ -2) for both 2 ^ -1/2(-"doubble Phi" + CC) and 2 ^ -1/2(-"Phi"C + C"Phi") and are found to be the same, proving U(1)_Y symmetry. The relevant coupling constants are given at order O(1).

Abstract: We calculate exact analytical expressions for O(alpha s) 3-jet and O (alpha^2 s ) 4-jet cross sections in polarized deep inelastic lepton nucleon scattering. Introducing an invariant jet definition scheme, we present differential distributions of 3- and 4-jet cross sections in the basic kinematical variables x and W^2 as well as total jet cross sections and show their dependence on the chosen spin-dependent (polarized) parton distributions. Noticebly differences in the predictions are found for the two extreme choices, i.e. a large negative sea-quark density or a large positive gluon density. Therefore, it may be possible to discriminate between different parametrizations of polarized parton densities, and hence between the different physical pictures of the proton spin underlying these parametrizations.

Abstract: We develop a method of singularity analysis for conformal graphs which, in particular, is applicable to the holographic image of AdS supergravity theory. It can be used to determine the critical exponents for any such graph in a given channel. These exponents determine the towers of conformal blocks that are exchanged in this channel. We analyze the scalar AdS box graph and show that it has the same critical exponents as the corresponding CFT box graph. Thus pairs of external fields couple to the same exchanged conformal blocks in both theories. This is looked upon as a general structural argument supporting the Maldacena hypothesis.

Abstract: We develop a constructive method to derive exactly solvable quantum mechanical models of rational (Calogero) and trigonometric (Sutherland) type. This method starts from a linear algebra problem: finding eigenvectors of triangular finite matrices. These eigenvectors are transcribed into eigenfunctions of a selfadjoint Schrödinger operator. We prove the feasibility of our method by constructing an " AG_3 model" of trigonometric type (the rational case was known before from Wolfes 1975). Applying a Coxeter group analysis we prove its equivalence with the B_3 model. In order to better understand features of our construction we exhibit the F_4 rational model with our method.

We report on the observation of quantized surface spin waves in periodic arrays of magnetic Ni81Fe19 wires by means of Brillouin light scattering spectroscopy. At small wavevectors (q_1 = 0 - 0.9*100000 cm^-1 ) several discrete, dispersionless modes with a frequency splitting of up to 0.9 GHz were observed for the wavevector oriented perpendicular to the wires. From the frequencies of the modes and the wavevector interval, where each mode is observed, the modes are identified as dipole-exchange surface spin wave modes of the film with quantized wavevector values determined by the boundary conditions at the lateral edges of the wires. With increasing wavevector the separation of the modes becomes smaller, and the frequencies of the discrete modes converge to the dispersion of the dipole-exchange surface mode of a continuous film.

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.