### Refine

#### Year of publication

- 1995 (58) (remove)

#### Document Type

- Preprint (58) (remove)

#### Keywords

- Boltzmann Equation (3)
- Numerical Simulation (3)
- Case Based Reasoning (2)
- Boundary Value Problems (1)
- CAP (1)
- Case-Based Reasoning (1)
- Case-Based Reasoning Systems (1)
- Evaluation (1)
- Evolution Equations (1)
- Fallbasiertes Schliessen (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (27)
- Fachbereich Informatik (22)
- Fachbereich Physik (9)

In this paper we consider a certain class of geodetic linear inverse problems LambdaF=G in a reproducing kernel Hilbert space setting to obtain a bounded generalized inverse operator Lambda. For a numerical realization we assume G to be given at a finite number of discrete points to which we employ a spherical spline interpolation method adapted to the Hilbertspaces. By applying Lambda to the obtained spline interpolant we get an approximation of the solution F. Finally our main task is to show some properties of the approximated solution and to prove convergence results if the data set increases.

We study the combination of the following already known ideas for showing confluence ofunconditional or conditional term rewriting systems into practically more useful confluence criteria forconditional systems: Our syntactic separation into constructor and non-constructor symbols, Huet's intro-duction and Toyama's generalization of parallel closedness for non-noetherian unconditional systems, theuse of shallow confluence for proving confluence of noetherian and non-noetherian conditional systems, theidea that certain kinds of limited confluence can be assumed for checking the fulfilledness or infeasibilityof the conditions of conditional critical pairs, and the idea that (when termination is given) only primesuperpositions have to be considered and certain normalization restrictions can be applied for the sub-stitutions fulfilling the conditions of conditional critical pairs. Besides combining and improving alreadyknown methods, we present the following new ideas and results: We strengthen the criterion for overlayjoinable noetherian systems, and, by using the expressiveness of our syntactic separation into constructorand non-constructor symbols, we are able to present criteria for level confluence that are not criteria forshallow confluence actually and also able to weaken the severe requirement of normality (stiffened withleft-linearity) in the criteria for shallow confluence of noetherian and non-noetherian conditional systems tothe easily satisfied requirement of quasi-normality. Finally, the whole paper also gives a practically usefuloverview of the syntactic means for showing confluence of conditional term rewriting systems.

Symmetry properties of average densities and tangent measure distributions of measures on the line
(1995)

Answering a question by Bedford and Fisher we show that for every Radon measure on the line with positive and finite lower and upper densities the one-sided average densities always agree with one half of the circular average densities at almost every point. We infer this result from a more general formula, which involves the notion of a tangent measure distribution introduced by Bandt and Graf. This formula shows that the tangent measure distributions are Palm distributions and define self-similar random measures in the sense of U. Zähle.

The paper presents numerical results on the simulation of boundary value problems for the Boltzmann equation in one and two dimensions. In the one-dimensional case, we use prescribed fluxes at the left and diffusive conditions on the right end of a slab to study the resulting steady state solution. Moreover, we compute the numerical density function in velocity space and compare the result with the Chapman-Enskog distribution obtained in the limit for continuous media. The aim of the two-dimensional simulations is to investigate the possibility of a symmetry break in the numerical solution.

Self-localization in unknown environments respectively correlation of current and former impressions of the world is an essential ability for most mobile robots. The method,proposed in this article is the construction of a qualitative, topological world model as a basis for self-localization. As a central aspect the reliability regarding error-tolerance and stability will be emphasized. The proposed techniques demand very low constraints for the kind and quality of the employed sensors as well as for the kinematic precisionof the utilized mobile platform. Hard real-time constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot.

Second Order Scheme for the Spatially Homogeneous Boltzmann Equation with Maxwellian Molecules
(1995)

In the standard approach, particle methods for the Boltzmann equation are obtained using an explicit time discretization of the spatially homogeneous Boltzmann equation. This kind of discretization leads to a restriction of the discretization parameter as well as on the differential cross section in the case of the general Boltzmann equation. Recently, it was shown, how to construct an implicit particle scheme for the Boltzmann equation with Maxwellian molecules. The present paper combines both approaches using a linear combination of explicit and implicit discretizations. It is shown that the new method leads to a second order particle method, when using an equiweighting of explicit and implicit discretization.

We describe a hybrid architecture supporting planning for machining workpieces. The architecture is built around CAPlan, a partial-order nonlinear planner that represents the plan already generated and allows external control decision made by special purpose programs or by the user. To make planning more efficient, the domain is hierarchically modelled. Based on this hierarchical representation, a case-based control component has been realized that allows incremental acquisition of control knowledge by storing solved problems and reusing them in similar situations.

The paper describes the concepts and background theory of the analysis of a neural-like network for the learning and replication of periodic signals containing a finite number of distinct frequency components. The approach is based on a two stage process consisting of a learning phase when the network is driven by the required signal followed by a replication phase where the network operates in an autonomous feedback mode whilst continuing to generate the required signal to a desired accuracy for a specified time. The analysis focusses on stability properties of a model reference adaptive control based learning scheme via the averaging method. The averaging analysis provides fast adaptive algorithms with proven convergence properties.

Oscillatory surface in-plane lattice spacing during growth of Co and Cu on a Cu(001) single crystal
(1995)

Recently, Xu and Cheney (1992) have proved that if all the Legendre coefficients of a zonal function defined on a sphere are positive then the function is strictly positive definite. It will be shown in this paper, that even if finitely many of the Legendre coefficients are zero, the strict positive definiteness can be assured. The results are based on approximation properties of singular integrals, and provide also a completely different proof of the results ofXu and Cheney.

Numerical Simulation of the Stationary One-Dimensional Boltzmann Equation by Particle Methods
(1995)

The paper presents a numerical simulation technique - based on the well-known particle methods - for the stationary, one-dimensional Boltzmann equation for Maxwellian molecules. In contrast to the standard splitting methods, where one works with the instationary equation, the current approach simulates the direct solution of the stationary problem. The model problem investigated is the heat transfer between two parallel plates in the rarefied gas regime. An iteration process is introduced which leads to the stationary solution of the exact - space discretized - Boltzmann equation, in the sense of weak convergence.

Normalized Coprime Factorizations in Continuous and Discrete Time - A Joint State-Space Approach
(1995)

Based on state-space formulas for coprime factorizations over ... and an algebraic characterization of J-inner functions, normalized doubly-coprime factorizations for different classes of continuous- and discrete-time transfer functions are derived by using a single general construction method. The parametrization of the factors is in terms of the stabilizing solutions of general degenerate continuous- respectively discrete-time Riccati equations, which are obtained by examining state-space representations of J-normalized factor matrices.