### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (1179) (entfernen)

#### Schlagworte

- AG-RESY (17)
- Case-Based Reasoning (16)
- Mehrskalenanalyse (10)
- RODEO (10)
- Approximation (9)
- Fallbasiertes Schliessen (9)
- Wavelet (9)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)

#### Fachbereich / Organisatorische Einheit

2D quantum dilaton gravitational Hamiltonian, boundary terms and new definition for total energy
(1995)

The ADM and Bondi mass for the RST model have been first discussed from Hawking and Horowitz's argument. Since there is a nonlocal term in the RST model, the RST lagrangian has to be localized so that Hawking and Horowitz's proposal can be carried out. Expressing the localized RST action in terms of the ADM formulation, the RST Hamiltonian can be derived, meanwhile keeping track of all boundary terms. Then the total boundary terms can be taken as the total energy for the RST model. Our result shows that the previous expression for the ADM and Bondi mass actually needs to be modified at quantum level, but at classical level, our mass formula can be reduced to that given by Bilal and Kogan [5] and de Alwis [6]. It has been found that there is a new contribution to the ADM and Bondi mass from the RST boundary due to the existence of the hidden dynamical field. The ADM and Bondi mass with and without the RST boundary for the static and dynamical solutions have been discussed respectively in detail, and some new properties have been found. The thunderpop of the RST model has also been encountered in our new Bondi mass formula.

This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.

Vorgestellt wird ein System basierend auf einem 3D-Scanner nach dem Licht- schnitt-Prinzip mit dem es möglich ist, einen Menschen innerhalb von 1,5 Sekun- den dreidimensional zu erfassen. Mit Hilfe von Evolutionären Algorithmen wird über eine modellbasierte Dateninterpretation die Auswertung der Meßdaten betrie- ben, so daß beliebige Körpermaße ermittelt werden können. Das Ergebnis ist ein individualisiertes CAD-Modells der Person im Rechner. Ein derartiges Modell kann als virtuelle Kleiderpuppe zur Produktion von Maßbekleidung dienen.

We have presented here a two-dimensional kinetical scheme for equations governing the motion of a compressible flow of an ideal gas (air) based on the Kaniel method. The basic flux functions are computed analytically and have been used in the organization of the flux computation. The algorithm is implemented and tested for the 1D shock and 2D shock-obstacle interaction problems.

The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

We consider the problem of evacuating a region with the help of buses. For a given set of possible collection points where evacuees gather, and possible shelter locations where evacuees are brought to, we need to determine both collection points and shelters we would like to use, and bus routes that evacuate the region in minimum time.
We model this integrated problem using an integer linear program, and present a branch-cut-and-price algorithm that generates bus tours in its pricing step. In computational experiments we show that our approach is able to solve instances of realistic size in sufficient time for practical application, and considerably outperforms the usage of a generic ILP solver.

Contrary to symbolic learning approaches, which represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case- based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and case-based methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

Retrieving multiple cases is supposed to be an adequate retrieval strategy for guiding partial-order planners because of the recognized flexibility of these planners to interleave steps in the plans. Cases are combined by merging them. In this paper, we will examine two different kinds of merging cases in the context of partial-order planning. We will see that merging cases can be very difficult if the cases are merged eagerly. On the other hand, if cases are merged by avoiding redundant steps, the guidance of the additional cases tends to decrease with the number of covered goals and retrieved cases in domains having a certain kind of interactions. Thus, to retrieve a single case covering many of the goals of the problem or to retrieve fewer cases covering many of the goals is at least equally effective as to retrieve several cases covering all goals in these domains.

A Case Study on Specifikation,Detection and Resolution of IN Feature Interactions with Estelle
(1994)

We present an approach for the treatment of Feature Interactions in Intelligent Networks. The approach is based on the formal description technique Estelle and consists of three steps. For the first step, a specification style supporting the integration of additional features into a basic service is introduced . As a result, feature integration is achieved by adding specification text, i.e . on a purely syntactical level. The second step is the detection of feature interactions resulting from the integration of additional features. A formal criterion is given that can be used for the automatic detection of a particular class of feature interactions. In the third step, previously detected feature interactions are resolved. An algorithm has been devised that allows the automatical incorporation of high-level design decisions into the formal specification. The presented approach is applied to the Basic Call Service and several supplementary interacting features.

A large set of criteria to evaluate formal methods for reactive systems is presented. To make this set more comprehensible, it is structured according to a Concept-Model of formal methods. It is made clear that it is necessary to make the catalogue more specific before applying it. Some of the steps needed to do so are explained. As an example the catalogue is applied within the context of the application domain building automation systems to three different formal methods: SDL, statecharts, and a temporallogic.

In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

In this paper we develop a data-driven mixture of vector autoregressive models with exogenous components. The process is assumed to change regimes according to an underlying Markov process. In contrast to the hidden Markov setup, we allow the transition probabilities of the underlying Markov process to depend on past time series values and exogenous variables. Such processes have potential applications to modeling brain signals. For example, brain activity at time t (measured by electroencephalograms) will can be modeled as a function of both its past values as well as exogenous variables (such as visual or somatosensory stimuli). Furthermore, we establish stationarity, geometric ergodicity and the existence of moments for these processes under suitable conditions on the parameters of the model. Such properties are important for understanding the stability properties of the model as well as deriving the asymptotic behavior of various statistics and model parameter estimators.

A new approach for modelling time that does not rely on the concept of a clock is proposed. In order to establish a notion of time, system behaviour is represented as a joint progression of multiple threads of control, which satisfies a certain set of axioms. We show that the clock-independent time model is related to the well-known concept of a global clock and argue that both approaches establish the same notion of time.

Coloring terms (rippling) is a technique developed for inductive theorem proving which uses syntactic differences of terms to guide the proof search. Annotations (colors) to terms are used to maintain this information. This technique has several advantages, e.g. it is highly goal oriented and involves little search. In this paper we give a general formalization of coloring terms in a higher-order setting. We introduce a simply-typed lambda calculus with color annotations and present an appropriate (pre-)unification algorithm. Our work is a formal basis to the implementation of rippling in a higher-order setting which is required e.g. in case of middle-out reasoning. Another application is in the construction of natural language semantics, where the color annotations rule out linguistically invalid readings that are possible using standard higher-order unification.

This paper develops a sound and complete transformation-based algorithm forunification in an extensional order-sorted combinatory logic supporting constantoverloading and a higher-order sort concept. Appropriate notions of order-sortedweak equality and extensionality - reflecting order-sorted fij-equality in thecorresponding lambda calculus given by Johann and Kohlhase - are defined, andthe typed combinator-based higher-order unification techniques of Dougherty aremodified to accommodate unification with respect to the theory they generate. Thealgorithm presented here can thus be viewed as a combinatory logic counterpartto that of Johann and Kohlhase, as well as a refinement of that of Dougherty, andprovides evidence that combinatory logic is well-suited to serve as a framework forincorporating order-sorted higher-order reasoning into deduction systems aimingto capitalize on both the expressiveness of extensional higher-order logic and theefficiency of order-sorted calculi.

Treating polyatomic gases in kinetic gas theory requires an appropriate molecule model taking into account the additional internal structure of the gas particles. In this paper we describe two such models, each arising from quite different approaches to this problem. A simulation scheme for solving the corresponding kinetic equations is presented and some numerical results to 1D shockwaves are compared.

Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

We consider the problem of evacuating an urban area caused by a natural or man-made disaster. There are several planning aspects that need to be considered in such a scenario, which are usually considered separately, due to their computational complexity. These aspects include: Which shelters are used to accommodate evacuees? How to schedule public transport for transit-dependent evacuees? And how do public and individual traffic interact? Furthermore, besides evacuation time, also the risk of the evacuation needs to be considered.
We propose a macroscopic multi-criteria optimization model that includes all of these questions simultaneously. As a mixed-integer programming formulation cannot handle instances of real-world size, we develop a genetic algorithm of NSGA-II type that is able to generate feasible solutions of good quality in reasonable computation times.
We extend the applicability of these methods by also considering how to aggregate instance data, and how to generate solutions for the original instance starting from a reduced solution.
In computational experiments using real-world data modelling the cities of Nice in France and Kaiserslautern in Germany, we demonstrate the effectiveness of our approach and compare the trade-off between different levels of data aggregation.

This paper describes a system that supports softwaredevelopment processes in virtual software corporations. A virtual software corporation consists of a set of enterprisesthat cooperate in projects to fulfill customer needs. Contracts are negotiated in the whole lifecycle of asoftware development project. The negotiations really influence the performance of a company. Therefore, it isuseful to support negotiations and planning decisions with software agents. Our approach integrates software agentapproaches for negotiation support with flexible multiserver workflow engines.