### Refine

#### Document Type

- Preprint (3) (remove)

#### Has Fulltext

- yes (3) (remove)

#### Keywords

- Mehrskalenanalyse (3) (remove)

The following two papers present recent developments in multiscale ocean circulation modeling and multiscale gravitational field modeling that have been presented at the 2nd International GOCE User Workshop 2004 in Frascati. Part A - Multiscale Modeling of Ocean Circulation In this paper the applicability of multiscale methods to oceanography is demonstrated. More precisely, we use convolutions with certain locally supported kernels to approximate the dynamic topography and the geostrophic flow. As data sets the French CLS01 data are used for the mean sea surface topography and are compared to the EGM96 geoid. Since those two data sets have very different levels of spatial resolutions the necessity of an interpolating or approximating tool is evident. Compared to the standard spherical harmonics approach, the strongly space localizing kernels improve the possibilities of local data analysis here. Part B - Multiscale Modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01, UCPH2002_0.5, EGM96 Spherical wavelets have been developed by the Geomathematics Group Kaiserslautern for several years and have been successfully applied to georelevant problems. Wavelets can be considered as consecutive band-pass filters and allow local approximations. The wavelet transform can also be applied to spherical harmonic models of the Earth's gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01, UCPH2002_0.5, and the well-known EGM96. Thereby, wavelet coefficients arise. In this paper it is the aim of the Geomathematics Group to make these data available to other interested groups. These wavelet coefficients allow not only the reconstruction of the wavelet approximations of the gravitational potential but also of the geoid, of the gravity anomalies and other important functionals of the gravitational field. Different types of wavelets are considered: bandlimited wavelets (here: Shannon and Cubic Polynomial (CuP)) as well as non-bandlimited ones (in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet variances are given. The data format of the wavelet coefficients is also included.

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.