Filtern
Erscheinungsjahr
Dokumenttyp
- Dissertation (1251) (entfernen)
Sprache
- Deutsch (667)
- Englisch (583)
- Mehrsprachig (1)
Schlagworte
- Visualisierung (18)
- Simulation (16)
- Apoptosis (12)
- Katalyse (12)
- Finite-Elemente-Methode (11)
- Phasengleichgewicht (11)
- Stadtplanung (11)
- Mobilfunk (10)
- Modellierung (10)
- Eisen (9)
Fachbereich / Organisatorische Einheit
- Fachbereich Chemie (304)
- Fachbereich Maschinenbau und Verfahrenstechnik (228)
- Fachbereich Mathematik (225)
- Fachbereich Informatik (139)
- Fachbereich Biologie (99)
- Fachbereich ARUBI (71)
- Fachbereich Elektrotechnik und Informationstechnik (65)
- Fachbereich Bauingenieurwesen (38)
- Fachbereich Sozialwissenschaften (29)
- Fachbereich Raum- und Umweltplanung (21)
- Fachbereich Physik (19)
- Fachbereich Wirtschaftswissenschaften (9)
- Fraunhofer (ITWM) (4)
- Fachbereich Architektur (2)
Die Nähtechnik in Verbindung mit Harzinfusions- und -injektionstechniken eröffnet
ein erhebliches Gewichts- und Kosteneinsparpotential primär belasteter
Strukturbauteile aus Faser-Kunststoff-Verbundwerkstoffen. Dabei ist es unter
bestimmten Voraussetzungen möglich, durch Vernähungen gezielte Steigerungen
mechanischer Eigenschaften zu erreichen. Ein genaues Verständnis wirksamer
Zusammenhänge bezüglich der Änderung mechanischer Kennwerte verglichen mit
dem unvernähten Verbund ist unverzichtbar, um einen Einsatz dieser Technologie im
zivilen Flugzeugbau voranzubringen.
Im Rahmen dieser Arbeit wird eine breit angelegte experimentelle Parameterstudie
zum Einfluss verschiedener Nähparameter auf Scheiben-Elastizitäts- und
Festigkeitseigenschaften von kohlenstofffaserverstärkten Epoxidharzverbunden unter
Zug- und Druckbelastung durchgeführt. Neben der Stichrichtung, der Garnfeinheit,
dem Nahtabstand und der Stichlänge wurde auch die Belastungsrichtung variiert. Bei
einigen Parametereinstellungen konnten keine Änderungen des Elastizitätsmoduls
oder der Festigkeit in der Laminatebene festgestellt werden, wohingegen in anderen
Fällen Reduktionen oder Steigerungen um bis zu einem Drittel des Kennwerts des
unvernähten Laminats beobachtet wurden. Dabei ist vor allem der Einfluss der
Garnfeinheit dominierend.
Die Fehlstellenausbildung infolge eines Stichs in Abhängigkeit der gewählten
Parameter und der Orientierung der Einzelschicht wurde anhand von Schliffbildern in
der Laminatebene untersucht. Ein erheblicher Einfluss der einzelnen Parameter auf
die Fehlstellenausbildung ist festzustellen, wobei wiederum die Garnfeinheit
dominiert. Anhand der Ergebnisse der Auswertung der Fehlstellenausbildung in den
Einzelschichten wurde ein empirisches Modell generiert, womit charakteristische
Fehlstellengröße n wie die Querschnittsfläche, die Breite und die Länge in
Abhängigkeit der genannten Parameter berechnet werden können.
Darauf aufbauend wurde ein Finite-Elemente-Elementarzellenmodell generiert, mit
welchem Scheiben-Elastizitätsgrößen vernähter Laminate abgeschätzt werden
können. Neben der Berücksichtigung der genannten Nähparameter ist der zentrale
Aspekt hierbei die Beschreibung eines Stichs in Form von Reinharzgebiet und
Faserumlenkungsbereich in jeder Einzelschicht.
Stitching technology in combination with Liquid Composite Molding techniques offers
a possibility to reduce significantly weight and costs of primarily loaded structural
parts made of Fiber Reinforced Polymers. Thereby, it is possible to enhance
mechanical properties simultaneously. It is essential to understand effective
correlations of all important parameters concerning changes in mechanical
characteristics due to additional stitching if stitching technologies have to be
established in the civil aircraft industry.
In this thesis, a broad experimental study on the influence of varying stitching
parameters on the membrane tensile and compressive modulus and strength of
carbon fiber reinforced epoxy laminates is presented. The direction of stitching,
thread diameter, spacing and pitch length as well as the direction of testing had been
varied. In some cases, no changes in modulus and strength could be found due to
the chosen parameters, whereas in other cases reductions or enhancements of up to
30 % compared to the unstitched laminate were observed. Thereby, the thread
diameter shows significant influence on these changes in mechanical properties.
In addition, the stitch and void formation in the thickness direction due to the stitching
parameters was investigated by evaluating micrographs in each layer of the laminate.
Again, the thread diameter showed an outstanding influence on the characteristics of
matrix pure area (void) and fiber disorientation. A mathematical model was evaluated
in order to predict in-plane characteristics of stitches and voids, from which the cross
sectional area, the width and the length of a void due to the chosen stitching
parameters can be derived.
Finally, a Finite Element based unit cell model was established to calculate elastic
constants of stitched FRP laminates. With this model it is possible to consider a stitch
as a matrix pure region and additionally an area of in-plane fiber disorientation
depending on the stitching parameters as introduced above. The model was
validated using the experimental data for tensile and compressive loading.
The outstanding flexibility of this FE unit cell approach is shown in a parametric
study, where different void formations as well as stitching parameters were varied in
a stitched, unidirectional laminate. It was found that three different aspects influence
significantly the in-plane elastic constants of stitched laminates. First of all, the
stitching parameters as well as the laminate characteristics define the shape of the
unit cell including the areas of the stitch and the fiber disorientation. Secondly,
stitching changes the fiber volume fraction in all layers, which causes changes in
elastic properties as well. Thirdly, the type and the direction of loading has to be
considered, because each change in the architecture of the laminate results in
different effects on the in-plane elastic constants namely tensile, compressive or
shear moduli as well as the Poisson´s ratios.
The demand of sustainability is continuously increasing. Therefore, thermoplastic
composites became a focus of research due to their good weight to performance
ratio. Nevertheless, the limiting factor of their usage for some processes is the loss of
consolidation during re-melting (deconsolidation), which reduces the part quality.
Several studies dealing with deconsolidation are available. These studies investigate
a single material and process, which limit their usefulness in terms of general
interpretations as well as their comparability to other studies. There are two main
approaches. The first approach identifies the internal void pressure as the main
cause of deconsolidation and the second approach identifies the fiber reinforcement
network as the main cause. Due to of their controversial results and limited variety of
materials and processes, there is a big need of a more comprehensive investigation
on several materials and processes.
This study investigates the deconsolidation behavior of 17 different materials and
material configurations considering commodity, engineering, and performance
polymers as well as a carbon and two glass fiber fabrics. Based on the first law of
thermodynamics, a deconsolidation model is proposed and verified by experiments.
Universal applicable input parameters are proposed for the prediction of
deconsolidation to minimize the required input measurements. The study revealed
that the fiber reinforcement network is the main cause of deconsolidation, especially
for fiber volume fractions higher than 48 %. The internal void pressure can promote
deconsolidation, when the specimen was recently manufactured. In other cases the
internal void pressure as well as the surface tension prevents deconsolidation.
During deconsolidation the polymer is displaced by the volume increase of the void.
The polymer flow damps the progress of deconsolidation because of the internal
friction of the polymer. The crystallinity and the thermal expansion lead to a
reversible thickness increase during deconsolidation. Moisture can highly accelerate
deconsolidation and can increase the thickness by several times because of the
vaporization of water. The model is also capable to predict reconsolidation under the
defined boundary condition of pressure, time, and specimen size. For high pressure
matrix squeeze out occur, which falsifies the accuracy of the model.The proposed model was applied to thermoforming, induction welding, and
thermoplastic tape placement. It is demonstrated that the load rate during
thermoforming is the critical factor of achieving complete reconsolidation. The
required load rate can be determined by the model and is dependent on the cooling
rate, the forming length, the extent of deconsolidation, the processing temperature,
and the final pressure. During induction welding deconsolidation can tremendously
occur because of the left moisture in the polymer at the molten state. The moisture
cannot fully diffuse out of the specimen during the faster heating. Therefore,
additional pressure is needed for complete reconsolidation than it would be for a dry
specimen. Deconsolidation is an issue for thermoplastic tape placement, too. It limits
the placement velocity because of insufficient cooling after compaction. If the
specimen after compaction is locally in a molten state, it deconsolidates and causes
residual stresses in the bond line, which decreases the interlaminar shear strength. It
can be concluded that the study gains new knowledge and helps to optimize these
processes by means of the developed model without a high number of required
measurements.
Aufgrund seiner guten spezifischen Festigkeit und Steifigkeit ist der
endlosfaserverstärkte Thermoplast ein hervorragender Leichtbauwerkstoff. Allerdings
kann es während des Wiederaufschmelzens durch Dekonsolidierung zu einem
Verlust der guten mechanischen Eigenschaften kommen, daher ist Dekonsolidierung
unerwünscht. In vielen Studien wurde die Dekonsolidierung mit unterschiedlichen
Ergebnissen untersucht. Dabei wurde meist ein Material und ein Prozess betrachtet.
Eine allgemeine Interpretation und die Vergleichbarkeit unter den Studien sind
dadurch nur begrenzt möglich. Aus der Literatur sind zwei Ansätze bekannt. Dem
ersten Ansatz liegt der Druckunterschied zwischen Poreninnendruck und
Umgebungsdruck als Hauptursache der Dekonsolidierung zu Grunde. Beim zweiten
Ansatz wird die Faserverstärkung als Hauptursache identifiziert. Aufgrund der
kontroversen Ergebnisse und der begrenzten Anzahl der Materialien und
Verarbeitungsverfahren, besteht die Notwendigkeit einer umfassenden Untersuchung
über mehrere Materialien und Prozesse. Diese Studie umfasst drei Polymere
(Polypropylen, Polycarbonat und Polyphenylensulfid), drei Gewebe (Köper, Atlas und
Unidirektional) und zwei Prozesse (Autoklav und Heißpressen) bei verschiedenen
Faservolumengehalten.
Es wurde der Einfluss des Porengehaltes auf die interlaminare Scherfestigkeit
untersucht. Aus der Literatur ist bekannt, dass die interlaminare Scherfestigkeit mit
der Zunahme des Porengehaltes linear sinkt. Dies konnte für die Dekonsolidierung
bestätigt werden. Die Reduktion der interlaminaren Scherfestigkeit für
thermoplastische Matrizes ist kleiner als für duroplastische Matrizes und liegt im
Bereich zwischen 0,5 % bis 1,5 % pro Prozent Porengehalt. Außerdem ist die
Abnahme signifikant vom Matrixpolymer abhängig.
Im Falle der thermisch induzierten Dekonsolidierung nimmt der Porengehalt
proportional zu der Dicke der Probe zu und ist ein Maß für die Dekonsolidierung. Die
Pore expandiert aufgrund der thermischen Gasexpansion und kann durch äußere
Kräfte zur Expansion gezwungen werden, was zu einem Unterdruck in der Pore
führt. Die Faserverstärkung ist die Hauptursache der Dickenzunahme
beziehungsweise der Dekonsolidierung. Die gespeicherte Energie, aufgebaut während der Kompaktierung, wird während der Dekonsolidierung abgegeben. Der
Dekompaktierungsdruck reicht von 0,02 MPa bis 0,15 MPa für die untersuchten
Gewebe und Faservolumengehalte. Die Oberflächenspannung behindert die
Porenexpansion, weil die Oberfläche vergrößert werden muss, die zusätzliche
Energie benötigt. Beim Kontakt von benachbarten Poren verursacht die
Oberflächenspannung ein Verschmelzen der Poren. Durch das bessere Volumen-
Oberfläche-Verhältnis wird Energie abgebaut. Der Polymerfluss bremst die
Entwicklung der Dickenzunahme aufgrund der erforderlichen Energie (innere
Reibung) der viskosen Strömung. Je höher die Temperatur ist, desto niedriger ist die
Viskosität des Polymers, wodurch weniger Energie für ein weiteres Porenwachstum
benötigt wird. Durch den reversiblen Einfluss der Kristallinität und der
Wärmeausdehnung des Verbundes wird während der Erwärmung die Dicke erhöht
und während der Abkühlung wieder verringert. Feuchtigkeit kann einen enormen
Einfluss auf die Dekonsolidierung haben. Ist noch Feuchtigkeit über der
Schmelztemperatur im Verbund vorhanden, verdampft diese und kann die Dicke um
ein Vielfaches der ursprünglichen Dicke vergrößern.
Das Dekonsolidierungsmodell ist in der Lage die Rekonsolidierung vorherzusagen.
Allerdings muss der Rekonsolidierungsdruck unter einem Grenzwert liegen
(0,15 MPa für 50x50 mm² und 1,5 MPa für 500x500 mm² große Proben), da es sonst
bei der Probe zu einem Polymerfluss aus der Probe von mehr als 2 % kommt. Die
Rekonsolidierung ist eine inverse Dekonsolidierung und weist die gleichen
Mechanismen in der entgegengesetzten Richtung auf.
Das entwickelte Modell basiert auf dem ersten Hauptsatz der Thermodynamik und
kann die Dicke während der Dekonsolidierung und der Rekonsolidierung
vorhersagen. Dabei wurden eine homogene Porenverteilung und eine einheitliche,
kugelförmige Porengröße angenommen. Außerdem wurde die Massenerhaltung
angenommen. Um den Aufwand für die Bestimmung der Eingangsgrößen zu
reduzieren, wurden allgemein gültige Eingabeparameter bestimmt, die für eine
Vielzahl von Konfigurationen gelten. Das simulierte Materialverhalten mit den
allgemein gültigen Eingangsparametern erzielte unter den definierten
Einschränkungen eine gute Übereinstimmung mit dem tatsächlichen
Materialverhalten. Nur bei Konfigurationen mit einer Viskositätsdifferenz von mehr als 30 % zwischen der Schmelztemperatur und der Prozesstemperatur sind die
allgemein gültigen Eingangsparameter nicht anwendbar. Um die Relevanz für die
Industrie aufzuzeigen, wurden die Effekte der Dekonsolidierung für drei weitere
Verfahren simuliert. Es wurde gezeigt, dass die Kraftzunahmegeschwindigkeit
während des Thermoformens ein Schlüsselfaktor für eine vollständige
Rekonsolidierung ist. Wenn die Kraft zu langsam appliziert wird oder die finale Kraft
zu gering ist, ist die Probe bereits erstarrt, bevor eine vollständige Konsolidierung
erreicht werden kann. Auch beim Induktionsschweißen kann Dekonsolidierung
auftreten. Besonders die Feuchtigkeit kann zu einer starken Zunahme der
Dekonsolidierung führen, verursacht durch die sehr schnellen Heizraten von mehr als
100 K/min. Die Feuchtigkeit kann während der kurzen Aufheizphase nicht vollständig
aus dem Polymer ausdiffundieren, sodass die Feuchtigkeit beim Erreichen der
Schmelztemperatur in der Probe verdampft. Beim Tapelegen wird die
Ablegegeschwindigkeit durch die Dekonsolidierung begrenzt. Nach einer scheinbar
vollständigen Konsolidierung unter der Walze kann die Probe lokal dekonsolidieren,
wenn das Polymer unter der Oberfläche noch geschmolzen ist. Die daraus
resultierenden Poren reduzieren die interlaminare Scherfestigkeit drastisch um 5,8 %
pro Prozent Porengehalt für den untersuchten Fall. Ursache ist die Kristallisation in
der Verbindungszone. Dadurch werden Eigenspannungen erzeugt, die in der
gleichen Größenordnung wie die tatsächliche Scherfestigkeit sind.
In der modernen Hubschrauberfertigung werden neben Rotorblättern auch tragende
Strukturteile aus kohlenstofffaserverstärkten Kunststoffen eingesetzt. Um dabei
einen möglichst hohen Leichtbaugrad zu erreichen, werden immer neue Design-
Konzepte entwickelt. Innovative Design-Lösungen sind aber nur dann in der Fertigung
umsetzbar, wenn sie effizient, kostengünstig und fehlerfrei gefertigt werden
können.
Ein wichtiger Baustein für die Produktion sind die Fertigungsvorrichtungen, auf
denen die Bauteile laminiert und ausgehärtet werden. Diese Vorrichtungen sind ein
maßgeblicher Faktor zum Erreichen der geforderten Bauteilqualität. Das Augenmerk
liegt hierbei auf der sogenannten tool-part-interaction, also der Interaktion zwischen
Fertigungsvorrichtung und Faserverbundmaterial. Diese hat einen großen Einfluss
auf das Aufheiz- und Verpressungsverhalten der Prepreg-Materialien und somit auch
direkt auf fertigungsinduzierte Schädigungen wie Faltenbildung und Verzug.
Aktuell kann der Vorrichtungsentwickler lediglich auf Erfahrungswerte zurückgreifen,
um ein gutes Aufheiz- und Verpressungsverhalten der Vorrichtung zu erreichen.
Zur Minimierung von Falten fehlt jedoch häufig sogar das nötige Hintergrundwissen
über die grundlegenden Mechanismen der Faltenbildung. Nur ein langwieriger
trial-and-error Prozess nach Produktion der Vorrichtung kann helfen, Faltenbildung
zu eliminieren oder zumindest zu reduzieren.
Zukünftig muss es ein primäres Ziel für den Vorrichtungsbau sein, Fertigungsmittel
gezielt auslegen und bereits im Rahmen der Konzeptentwicklung Aussagen
über die zu erwartende Bauteilgüte und das Fertigungsergebnis machen zu können.
Einen möglichen Weg stellt die Einführung einer Herstellprozesssimulation dar, da
sie bereits in einer frühen Entwicklungsphase das Aufheiz- und Verpressungsverhalten
eines Bauteils sowie den Einfluss der Fertigungsvorrichtung auf die Bauteilqualität
einschätzen kann. Fertigungsinduzierte Schädigungen, wie der prozessinduzierte
Verzug, lassen sich bereits mit Hilfe von kommerziell erhältlichen Software-Tools
vorhersagen. Um zukünftig auch die Faltenbildung bei der Prepreg-Autoklavfertigung
vorhersagbar zu machen, müssen zwei übergeordnete Fragestellungen bearbeitet
werden:Faltenbildung: Wie läuft die Faltenbildung in der Autoklavfertigung ab und
welche Mechanismen bzw. Einflussfaktoren müssen besonders beachtet werden?
Simulation: Wie muss eine Herstellprozesssimulation geartet sein, um den
Einfluss der Fertigungsvorrichtung auf die Faltenbildung vorhersagen zu können
und Vorrichtungen auf diese Weise zukünftig auslegbar zu machen?
Experimentelle Untersuchungen an Omega- und C-Profilen helfen, die Faltenbildung,
ihren primären Mechanismus und vor allem die verschiedenen Einflussfaktoren
zu verstehen und zu bewerten. Im Falle der vorliegenden Arbeit wurde besonders
die Kompaktierung des Laminates über einem Außenradius und die daraus entstehende
überschüssige Faser- bzw. Rovinglänge als primärer Faltenauslöser betrachtet.
Es konnte aus den Experimenten abgeleitet werden, dass besonders der
Verpressungsweg, die Bauteilgeometrie, das verwendete Faserhalbzeug (unidirektional
oder Gewebe), die tool-part-interaction und das interlaminare Reibverhalten für
den untersuchten Mechanismus von Bedeutung sind. Daraus lassen sich die Mindestanforderungen
an eine Herstellprozesssimulation zusammenstellen.
Eine umfassende Materialcharakterisierung inklusive der interlaminaren Reibung,
der Reibinteraktionen zwischen Bauteil und Fertigungsvorrichtung sowie des
Verpressungsverhaltens des Faserbettes sind der erste Schritt in der Entwicklung
einer industriell einsetzbaren Simulation.
Die Simulation selbst setzt sich aus einem thermo-chemischen und einem
Kompaktiermodul zusammen. Ersteres ermittelt das Aufheizverhalten der Vorrichtung
und des Bauteils im Autoklaven und stellt darüber hinaus Aushärtegrad und
Glasübergangstemperatur als Parameter für das zweite Simulationsmodul zur Verfügung.
Zur korrekten Bestimmung des Wärmeübergangs im Autoklaven wurde ein
semi-empirisches Verfahren entwickelt, das in der Lage ist, Strömungseffekte und
Beladungszustände des Autoklaven zu berücksichtigen. Das Kompaktiermodul umfasst
das Verpressungsverhalten des Faserbettes inklusive des Harzflusses, der toolpart-
interaction und der Relativverschiebung der Laminatlagen zueinander. Besonders
das Erfassen der Durchtränkung des Fasermaterials mittels eines phänomenologischen
Ansatzes und das Einbringen der Reibinteraktionen in die Simulation muss
als Neuerung im Vergleich zu bisherigen Simulationskonzepten gesehen werden. Auf
diese Weise ist die Simulation in der Lage, alle wichtigen Einflussfaktoren der Faltenbildung zu erfassen. Der aus der Simulation auslesbare Spannungszustand kann
Aufschluss über die Faltenbildung geben. Mit Hilfe eines im Rahmen dieser Arbeit
entwickelten (Spannungs-)Kriteriums lässt sich eine Aussage über das zu erwartende
Faltenrisiko treffen. Außerdem ermöglicht die Simulation eine genaue Identifikation
der Haupttreiber der Faltenbildung für das jeweilige Bauteil bzw. Fertigungskonzept.
Parameter- und Sensitivitätsstudien können dann den experimentellen Aufwand
zur Behebung der Faltenbildung deutlich reduzieren.
Die hier vorliegende Arbeit erweitert damit nicht nur das Wissen über die Faltenbildung
in der Prepreg-Autoklavfertigung und deren Einflussfaktoren, sondern gibt
dem Vorrichtungsentwickler auch eine Simulationsmethodik an die Hand, die ihn in
die Lage versetzt, Fertigungsvorrichtungen gezielt auszulegen und zu optimieren.
In addition to rotor blades, primary structural parts are also manufactured from
carbon fiber reinforced plastics in modern helicopter production. New design concepts
are constantly developed in order to reach a maximum degree of lightweight
design. However, innovative design solutions are only realizable, if they can be manufactured
efficiently, economically, and free from defects.
Molds for laminating and curing of composite parts are of particular importance.
They are a relevant factor for achieving the required part quality. The attention is directed
at the so-called tool-part-interaction, i.e. the interaction between tools and fiber
composite materials, which has a great influence on the heating and compaction
behavior of the prepreg materials and therefore also directly on manufacturing induced
damage such as wrinkling and warping.
At present, the tooling designer can only resort to his/her experience to achieve
a good heating and compaction behavior of the molds. However, the necessary background knowledge about the fundamental mechanisms of wrinkling is often lacking
and only a tedious trial-and-error process after the production of the mold can
help eliminate or at least reduce wrinkling.
In the future, the primary goal for tooling production must be to specifically design
the manufacturing equipment and to be able to already make a statement about
the expected part quality and production result during the conceptual stage. A possible
solution is the introduction of a manufacturing process simulation, because at an
early development stage it can estimate the heating and compaction behavior of a
part as well as the influence of the manufacturing equipment on part quality. Commercially
available software tools are already able to predict damage during production,
as e.g. process induced deformation. In order to make wrinkling predictable also,
two primary issues need to be dealt with: Wrinkling: How does wrinkling develop in autoclave manufacturing and which
mechanisms or influencing factors need to be particularly considered?
Simulation: What must be integrated into a manufacturing process simulation,
if it is to predict the influence of the mold on wrinkling and to ensure future
tooling improvement? Experimental examinations of omega and c-profiles help to understand and
evaluate wrinkling, its primary mechanism, and particularly the various influencing
factors. In the case of the present paper, the compaction of the laminate over a convex
radius and the resulting surplus roving length was especially examined as primary
cause for wrinkling. From the experiments could be deduced that the compaction,
the part geometry, the utilized semi-finished fabrics (unidirectional and woven), the
tool-part-interaction and the interlaminar friction are of importance for the examined
mechanism. These factors determine the minimum requirements for a manufacturing
process simulation.
A comprehensive material characterization including interlaminar friction, friction
interaction between part and tool as well as the compaction behavior of the fiber bed
are the first step toward the development of a simulation on an industrial scale. The
simulation consists of a thermochemical and a compaction module. The former determines
the heating behavior of the mold and the part in the autoclave and additionally
provides the degree of cure and the glass transition temperature as parameters
for the second simulation module. A semi-empirical method that is able to consider
flow effects and loading conditions of the autoclave was developed for the correct
determination of the heat transfer within the autoclave. The compaction module comprises
the compaction behavior of the fiber bed including resin flow, tool-partinteraction
and relative displacement of the layers. Especially the integration of the
saturation phase by means of a phenomenological approach and the inclusion of friction
interaction in the simulation must be seen as innovation in comparison to other
simulation concepts. The simulation is thus able to capture all the important influencing
factors of wrinkling. The state of stress that is retrieved from the simulation can
provide information about the formation of wrinkles. Furthermore, the simulation enables
an exact identification of the main drivers for the development of wrinkles in the
respective part or manufacturing concept. Parameters and sensitivity analyses can
then significantly reduce the experimental effort for the elimination of wrinkling.
The present study does therefore not only expand the knowledge about wrinkling
and its influencing factors in prepreg autoclave manufacturing, but also presents
the tooling designer with a simulation methodology that enables him/her to systematically
develop and optimize manufacturing equipment.
Ultrahochfester Beton (UHB oder aus dem Englischen Ultra High Performance Concrete, kurz UHPC) weist eine Druckfestigkeit im Bereich von 150 bis 250 MPa auf. Eine gesteigerte Zugfestigkeit und ein duktiles Verhalten werden durch die Zugabe von Mikrostahlfasern erzielt (Ultra High Performance Fibre Reinforced Concrete, UHPFRC). Der Fasergehalt ist in der Regel höher als bei normalfestem Faserbeton, sodass aufgrund der Fasern ein „Strain-hardening“ Verhalten erreicht werden kann: in einem Biegezugversuch kann die Last nach der Erstrissbildung weiter gesteigert werden bis zur Ausbildung mehrerer feiner Risse. Da der Beitrag der Fasern zum Zugtragverhalten des UHPFRC ein wesentlicher ist, müssen die Bauteile im gerissenen Zustand bemessen werden. Während der statische und dynamische Widerstand bereits umfangreich untersucht wurde, liegen nur wenige Untersuchungen bezüglich das Dauerstandzugverhaltens von gerissenem ultrahochfestem Beton vor. Untersuchungen an normalfestem faserverstärktem Beton haben gezeigt, dass die zeitabhängigen Zugverformungen im gerissenen Zustand größer sind als die in ungerissenem Material.
Um die zu erwartenden Verformungen abschätzen zu können und um das Kriechverhalten des Materials bis zum Versagen zu analysieren, wurde im Rahmen dieser Arbeit ein umfangreiches Versuchsprogramm durchgeführt. Über 60 uniaxiale Zug- und Biegezugprobekörper wurden unter Dauerlast über einen Zeitraum von bis zu 15 Monaten beansprucht. Davon wurden 22 Probekörper nach vier Monaten hinsichtlich ihrer Resttragfähigkeit getestet. Die restlichen Probekörper befinden sich für Langzeit-Messungen weiterhin in den Dauerlastprüfständen. Es wurden dabei verschiedene Parameter untersucht: u.a. das Belastungsniveau, Art und Umfang der Nachbehandlung des Betons, das Betonalter zu Beginn der Belastung, der Fasergehalt und die Faserschlankheit. Das Schwinden der unbelasteten Probekörper sowie das Druckkriechen belasteter Probekörper wurden an der verwendeten Mischung gemessen.
Der UHPFRC wies im Allgemeinen ein sehr stabiles Verhalten auf und es zeigte sich keine unkontrollierte Zunahme der Verformungen infolge eines Faserauszugs. Lediglich bei einem Probekörper kam es bei einer Last von 79% der aufgebrachten Last am Ende der Vorbelastung zum Versagen. Der Autor sieht dabei eine ungünstige Faserausrichtung als mögliche Ursache des frühzeitigen Versagens des Probekörpers an, was auf einen bedeutenden Einfluss dieses Parameters auf die Tragfähigkeit schließen lässt. Hinsichtlich der Bemessung von gerissenen UHPFRC-Bauteilen unter Dauerlast wurde ein Vorschlag für die Bemessung der Dauerstandfestigkeit ausgearbeitet.
Darüber hinaus wurden Faserauszugversuche durchgeführt und das Verbund-Schlupfverhalten der verwendeten Fasern ermittelt. Einige Probekörper wurden nach uniaxialen Zugversuchen per Computertomographie gescannt, um den Zusammenhang der Fasern im Versagensquerschnitt zur Zugfestigkeit der Probekörper zu untersuchen. Die untersuchten Probekörper wiesen unterschiedliche Zugfestigkeiten auf. Diese konnten durch die verschiedenen Faseranzahlen im Versagensquerschnitt gut abgebildet werden.
The focus of this work is to provide and evaluate a novel method for multifield topology-based analysis and visualization. Through this concept, called Pareto sets, one is capable to identify critical regions in a multifield with arbitrary many individual fields. It uses ideas found in graph optimization to find common behavior and areas of divergence between multiple optimization objectives. The connections between the latter areas can be reduced into a graph structure allowing for an abstract visualization of the multifield to support data exploration and understanding.
The research question that is answered in this dissertation is about the general capability and expandability of the Pareto set concept in context of visualization and application. Furthermore, the study of its relations, drawbacks and advantages towards other topological-based approaches. This questions is answered in several steps, including consideration and comparison with related work, a thorough introduction of the Pareto set itself as well as a framework for efficient implementation and an attached discussion regarding limitations of the concept and their implications for run time, suitable data, and possible improvements.
Furthermore, this work considers possible simplification approaches like integrated single-field simplification methods but also using common structures identified through the Pareto set concept to smooth all individual fields at once. These considerations are especially important for real-world scenarios to visualize highly complex data by removing small local structures without destroying information about larger, global trends.
To further emphasize possible improvements and expandability of the Pareto set concept, the thesis studies a variety of different real world applications. For each scenario, this work shows how the definition and visualization of the Pareto set is used and improved for data exploration and analysis based on the scenarios.
In summary, this dissertation provides a complete and sound summary of the Pareto set concept as ground work for future application of multifield data analysis. The possible scenarios include those presented in the application section, but are found in a wide range of research and industrial areas relying on uncertainty analysis, time-varying data, and ensembles of data sets in general.
Diese Arbeit beinhaltet die Synthese zweier cyclischer Amidat-Liganden und die Untersuchung des Koordinationsverhaltens dieser Makrocyclen. Dabei wurden die strukturellen, elektrochemischen und spektroskopischen Eigenschaften der entstandenen Komplexverbindungen untersucht. Um höhere Oxidationsstufen am Metallion besser zu stabilisieren als durch neutrale Liganden, wurden die Liganden H\(_2\)L-Me\(_2\)TAOC und HL-TAAP-\(^t\)Bu\(_2\) hergestellt. Es sind zwölfgliedrige makrocyclische Ringe mit vielen sp\(^2\)-hybridisierten Atomen, die eine sterische Rigidität bedingen. Gleichzeitig besitzen sie zwei trans-ständige, sp\(^3\)-hybridisierte Amin-Donoratome, die eine Faltung entlang der N\(_{Amin}\)-N\(_{Amin}\)-Achse ermöglichen. Die äquatorialen Stickstoffdonoratome werden durch deprotonierte Amid-Gruppen bzw. durch das Stickstoffatom eines Pyridinrings zur Verfügung gestellt. Für beide Liganden konnte eine zufriedenstellende Syntheseroute, mit passablen Ausbeuten etabliert werden. In der Kristallstruktur des Makrocyclus HL-TAAP-\(^t\)Bu\(_2\) wird eine Wanne-Wanne-Konformation beobachtet. Die für eine cis-oktaedrische Koordination an Metallionen benötigte Konformation wird bereits im metallfreien Zustand des Liganden wegen der intramolekularen Wasserstoffbrückenbindungen verwirklicht. Die freie Rotation um die C-C-Bindungen ist bei diesem Liganden nur leicht gehindert, da die diastereotopen H-Atome der Methylengruppen im \(^1\)H-NMR-Spektrum als breite Singuletts in Erscheinung treten. Die Makrocyclen konnten erfolgreich mit Nickel(II)-, Kupfer(II)- und Cobalt(II)-Ionen komplexiert und kristallisiert werden. Dabei wurden zufriedenstellende Ausbeuten erhalten. Ohne weiteren zweifach koordinierenden Coliganden bildet der Ligand H\(_2\)L-Me\(_2\)TAOC stets fünffach koordinierte Mono-chloro-Komplexe. Der Ligand HL-TAAP-\(^t\)Bu\(_2\) bildet sechsfach koordinierte Verbindungen. Durch die Verwendung von zweizähnigen Coliganden wurde für den Makrocyclus H\(_2\)L-Me\(_2\)TAOC eine sechsfache Koordination erzwungen. Wie alle sechsfach koordinierte Verbindungen in dieser Arbeit liegen sie in einer cis-oktaedrischen Koordinationsumgebung vor. Um Vergleichskomplexe zu erhalten, wurden auch mit den Diazapyridinophan-Liganden L-N\(_4\)Me\(_2\) und L-N\(_4\)\(^t\)Bu\(_2\) die entsprechenden Kupfer- und Nickelkomplexe mit den jeweiligen Coliganden synthetisiert. In den Kristallstrukturen sind die entsprechenden Verbindungen der Diazapyridinophan-Liganden generell stärker gefaltet als die der Amidat-Liganden. Durch die starken \( \sigma\)-Donoreigenschaften der Amidatgruppen werden im Allgemeinen kürzere äquatoriale Bindungen zu den Metallionen verursacht. Durch den Vergleich der Bindungslängen mit ähnlichen bekannten high- und low-spin-Cobalt(II)-Komplexen hat sich gezeigt, dass für die Länge der Co-N\(_{Amid}\)-Bindung im high-spin-Zustand Werte von 1,95 bis 1,97 Å gefunden werden. Für den low-spin-Zustand werden Werte zwischen 1,92 und 1,95 Å gefunden. Durch die elektrochemischen Untersuchungen konnte gezeigt werden, dass beim überwiegenden Teil der Verbindungen das Potential der Oxidationen deutlich in der Reihenfolge der Makrocyclen H\(_2\)L-Me\(_2\)TAOC < HL-TAAP-\(^t\)Bu\(_2\) < L-N\(_4\)Me\(_2\) < L-N\(_4\)\(^t\)Bu\(_2\) ansteigt. Das belegt eindeutig die leichtere Oxidierbarkeit der Komplexe mit den negativ geladenen Liganden, die damit höhere Oxidationsstufen besser stabilisieren. Durch die Energie der ersten Anregung in den UV/Vis-Spektren der Nickel(II)-Komplexe ergibt sich die Ligandenfeldstärke der makrocyclischen Liganden etwa in der Reihenfolge H\(_2\)L-Me\(_2\)TAOC ≈ L-N\(_4\)Me\(_2\) > L-N\(_4\)\(^t\)Bu\(_2\) ≈ HL-TAAP-\(^t\)Bu\(_2\).
Novel image processing techniques have been in development for decades, but most
of these techniques are barely used in real world applications. This results in a gap
between image processing research and real-world applications; this thesis aims to
close this gap. In an initial study, the quantification, propagation, and communication
of uncertainty were determined to be key features in gaining acceptance for
new image processing techniques in applications.
This thesis presents a holistic approach based on a novel image processing pipeline,
capable of quantifying, propagating, and communicating image uncertainty. This
work provides an improved image data transformation paradigm, extending image
data using a flexible, high-dimensional uncertainty model. Based on this, a completely
redesigned image processing pipeline is presented. In this pipeline, each
step respects and preserves the underlying image uncertainty, allowing image uncertainty
quantification, image pre-processing, image segmentation, and geometry
extraction. This is communicated by utilizing meaningful visualization methodologies
throughout each computational step.
The presented methods are examined qualitatively by comparing to the Stateof-
the-Art, in addition to user evaluation in different domains. To show the applicability
of the presented approach to real world scenarios, this thesis demonstrates
domain-specific problems and the successful implementation of the presented techniques
in these domains.
Der Fokus der vorliegenden Arbeit liegt auf endlosfaser- und langfaserverstärkten
thermoplastischen Materialien. Hierfür wurde das „multilayered hybrid
(MLH)“ Konzept entwickelt und auf zwei Halbzeuge, den MLH-Roving und die MLHMat
angewendet. Der MLH-Roving ist ein Roving (bestehend aus Endlosfasern), der
durch thermoplastische Folien in mehrere Schichten geteilt wird. Der MLH-Roving
wird durch eine neuartige Spreizmethode mit anschließender thermischen Fixierung
und abschließender mehrfacher Faltung hergestellt. Dadurch können verschiedene
Faser-Matrix-Konfigurationen realisiert werden. Die MLH-Mat ist ein
glasmattenverstärktes thermoplastisches Material, das für hohe Fasergehalte bis 45
vol. % und verschiedene Matrixpolymere, z.B. Polypropylen (PP) und Polyamide 6
(PA6) geeignet ist. Sie zeichnet sich durch eine hohe Homogenität in der
Flächendichte und in der Faserrichtung aus. Durch dynamische Crashversuche mit
auf MLH-Roving und MLH-Mat basierenden Probekörpern wurden das
Crashverhalten und die Performance untersucht. Die Ergebnisse der Crashkörper
basierend auf langfaserverstärktem Material (MLH-Mat) und endlosfaserverstärktem
Material (MLH-Roving) waren vergleichbar. Die PA6-Typen zeigten eine bessere
Crashperformance als PP-Typen.
The present work deals with continuous fiber- and long fiber reinforced thermoplastic
materials. The concept of multilayered hybrid (MLH) structure was developed and
applied to the so-called MLH-roving and MLH-mat. The MLH-roving is a continuous
fiber roving separated evenly into several sublayers by thermoplastic films, through
the sequential processes of spreading with a newly derived equation, thermal fixing,
and folding. It was aimed to satisfy the variety of material configuration as well as the
variety in intermediate product. The MLH-mat is a glass mat reinforced thermoplastic
(GMT)-like material that is suitable for high fiber contents up to 45 vol. % and various
matrix polymers, e.g. polypropylene (PP), polyamide 6 (PA6). It showed homogeneity
in areal density, random directional fiber distribution, and reheating stability required
for molding process. On the MLH-roving and MLH-mat materials, the crash behavior
and performance were investigated by dynamic crash test. Long fiber reinforced
materials (MLH-mat) were equivalent to continuous fiber reinforced materials (MLHroving),
and PA6 grades showed higher crash performance than PP grades.
In der vorliegenden Arbeit wurde ein glasfaserverstärkter Rotor für einen Elektromotor
entwickelt, welcher bei elektrisch angetriebenen Fahrzeugen verwendet werden
soll. Ziel ist eine kostengünstige Serienversion des Motors auf Basis eines bereits
bestehenden Baumusters. Im Wesentlichen waren dabei zwei Anforderungsfelder zu
erfüllen.
Als erstes mussten Verformungsrestriktionen unter Betriebslast eingehalten werden.
Es wurde ein Finite-Elemente-(FE-) Modell erstellt, wobei eine Schnittstelle zwischen
der Prozesssimulation der Fertigung und dem FE-Modell geschrieben wurde, um die
Informationen zum Lagenaufbau zu transferieren. Sowohl in der Analytik als auch in
der numerischen Simulation hat sich gezeigt, dass bei der im Betrieb auftretenden
Fliehkraft die gewünschte Verformung nur mit Hilfe der zu verwendenden Glasfaser
nicht eingehalten werden kann. Daraufhin wurde ein Konzept entwickelt, um die
Verformung mittels einer adaptiven Steuerung mit Formgedächtnislegierungen zu
begrenzen. Zunächst wurden Konzepte entwickelt, wie die Formgedächtnislegierung
in Drahtform an den Rotor angebunden werden kann. Die Konzepte wurden experimentell
überprüft, wobei gleichzeitig das Verhalten der Formgedächtnislegierung
ermittelt wurde, um daraus ein numerisches Simulationsmodell zu entwickeln,
welches mit dem Modell des Rotors verknüpft wurde. Dabei zeigte sich, dass dieses
Konzept das Verformungsverhalten positiv beeinflusst und in Abhängigkeit von der
verwendeten Menge die Verformungsrestriktion eingehalten werden kann.
Als zweites Anforderungsfeld wurde die Lasteinleitung zwischen dem Rotor und der
Abtriebswelle ausgelegt. Dafür wurde ein Konzept für eine Verschraubung als
Sonderform einer Bolzenverbindung erarbeitet, bei denen ein Gewinde in der
dickwandigen glasfaserverstärkten Kunststoff (GFK-) Struktur des Rotors mittels insitu-
Herstellung eingebracht wird. Um die Vor- und Nachteile eines solchen geformten
Gewindes gegenüber einer geschnittenen Variante zu ermitteln, wurden umfangreiche
quasistatische Versuche und zyklische Lebensdauerversuche an zwei verschiedenen
Laminaten und zwei verschiedenen Gewindetypen durchgeführt. Gemessen
wurde jeweils die (Ermüdungs-) Festigkeit bei axialer Kraft und bei Scherkraft.
Dabei zeigte sich, dass bei quasistatischer axialer Belastung die geformten
Gewinde im Mittel eine geringere Festigkeit aufweisen als die geschnittene Variante.Bei der für den Anwendungsfall relevanteren Scherbelastung konnten im Mittel
jedoch Festigkeitssteigerungen gemessen werden. Bei der Ermüdungsfestigkeit
waren die Vorteile abhängig von dem geprüften Lastniveau. Die Wöhlerlinien bei den
geformten Gewinden haben im Mittel einen deutlich flacheren Verlauf. Für die
meisten Vergleichspaare bedeutet dies, dass die geschnittene Variante bei sehr
hohen Lastniveaus beim Einstufenversuch eine größere Versagensschwingspielzahl
erreicht als die geformte Variante. Bei Verringerung der Last haben ab einem
individuellen Kreuzungspunkt jedoch die geformten Gewinde eine größere Schwingspielzahl
erreicht.
Abschließend wurde ein voll parametrisches numerisches Einheitszellen-Modell
erstellt, welches sowohl die geformten als auch die geschnittenen Gewinde abbilden
kann. Hierbei wurden auch Degradationsmodelle integriert, die ein verändertes
Werkstoffverhalten nach dem Auftreten insbesondere von Zwischenfaserbrüchen
und Delaminationen abbilden sollen. Validiert wurden die Modelle, indem die quasistatischen
Versuche nachgebildet wurden und die globale Verformung mit den
optischen Messungen aus den Versuchsreihen verglichen wurden. Dabei zeigte sich
eine gute Übereinstimmung bis relativ nah an die Schraube heran. In diesem Bereich
war die Simulation minimal zu steif, was auf eine noch nicht ausreichende Degradation
in der Simulation hindeutet.
In this study a GFRP rotor of an electric engine is developed. The engine shall be
used in electric drive trains in cars. Major aim of the study is to develop a low-cost
version of an existing prototype for serial production with a relatively high output of at
least 50.000 units per annum. Two main aims must be achieved.
First of all, the structural deformation must be limited under operating load. To predict
the deformation, a finite element model was set up. To import the lay-up information
from a filament winding process simulation software into the FE-model, a compilertool
was written. The numerical simulation and an analytical calculation have shown
that the GFRP-laminate alone is not able to limit the radial deformation caused by
centrifugal force under rotation. So a different approach was developed, using an
adaptive control with shape memory alloys. For this, a concept was investigated, how
the shape memory alloy wires can be attached on the GFRP structure. The strengths
of the different concepts were measured experimentally and simultaneously the
force-temperature behavior of the wire was investigated. Out of these empirical
studies, a material model of the shape memory alloys for the numerical simulation
was developed and combined with the existing simulation model of the rotor. The
simulation showed that the shape memory alloys can be used to decrease the radial
deformation below the given limits.
The second main requirement was to develop a proper load transfer from the metallic
output shaft into the GFRP rotor. For serial rotor production with a high output, the
direct forming of threads in the thick-walled GFRP was investigated. The direct
forming of threads reduces the manufacturing costs by avoiding wear of drilling and
cutting tools, although with a slight increase of tooling costs which are less relevant
due to the economies of scale of high output manufacturing processes as the
filament winding process. In this study the mechanical behavior of directly formed
threads was compared to conventionally tapped threads. Two different GFRP
laminate layups were investigated, a cross-ply-laminate and a quasi-isotropic
laminate, both with a thickness of approximately 12 mm, impregnated with epoxy
resin. A standard metrical thread and a more coarse thread were also compared,
both with an outer diameter of 8 mm. Two different tests were investigated: a pullout
test of the screw perpendicular to the laminate and a bearing-pull-through-test in the
laminate plane.
The quasi static test results show differences in fracture behavior, but in general very
good strength and stiffness behavior compared to conventionally cut threads in thickwalled
GFRP. The deformations of the surface of the GFRP laminates during the
tests were measured with a three dimensional digital image correlation system. The
measured deformations were used to validate the numerical simulations of the tests.
These simulations were parametrical built up in order to adapt them easily to other
application cases. They use a degradation mechanism to simulate the connection
behavior very close to the total fraction and show a very good correlation to the
experimental results.
As a second step, the fatigue behavior of the connection was also investigated. To
compare the cyclic performance of the formed and cut threads for both kinds of tests,
for both laminates and both threads - the metric and the coarse ones -, Woehler
diagrams with a load aspect ratio of R=0.1 were measured. Especially the high cycle
fatigue behavior with a relatively low maximum load, as commonly used in a real
structure, improves a lot when forming the threads.
At last a full parametrical numerical model of the laminate with both the formed and the cut thread was generated. Also algorithms for material degradation were integrated.
They can represent the behavior of the material after the appearance of inter
fiber failures or delamination. The validation of the numerical model was achieved by
remodeling the experimental tests and comparing the global deformation of the
model with the optical measurement of the quasi static tests. The deformation of the
simulation was very congruent to the tests, only very close to the screw the simulation
shows a slightly more stiff behavior. This indicates a not sufficient degradation of
the simulation due to damage effects in the material.
The gas phase infrared and fragmentation spectra of a systematic group of trimetallic oxo-centered
transition metal complexes are shown and discussed, with formate and acetate bridging ligands and
pyridine and water as axial ligands.
The stability of the complexes, as predicted by appropriate ab initio simulations, is demonstrated to
agree with collision induced dissociation (CID) measurements.
A broad range of DFT calculations are shown. They are used to simulate the geometry, the bonding
situation, relative stability and flexibility of the discussed complexes, and to specify the observed
trends. These simulations correctly predict the trends in the band splitting of the symmetric and
asymmetric carboxylate stretch modes, but fail to account for anharmonic effects observed specifically
in the mid IR range.
The infrared spectra of the different ligands are introduced in a brief literature review. Their changes
in different environments or different bonding situations are discussed and visualized, especially the
interplay between fundamental-, overtone-, and combination bands, as well as Fermi resonances
between them.
A new variation on the infrared multi photon dissociation (IRMPD) spectroscopy method is proposed
and evaluated. In addition to the commonly considered total fragment yield, the cumulative fragment
yield can be used to plot the wavelength dependent relative abundance of different fragmentation
products. This is shown to include valuable additional information on the excited chromophors, and
their coupling to specific fragmentation channels.
High quality homo- and heterometallic IRMPD spectra of oxo centered carboxylate complexes of
chromium and iron show the impacts of the influencing factors: the metal centers, the bridging ligands,
their carboxylate stretch modes and CH bend modes, and the terminal ligands.
In all four formate spectra, anharmonic effects are necessary to explain the observed spectra:
combination bands of both carboxylate stretch modes and a Fermi resonance of the fundamental of
the CH stretch mode, and a combination band of the asymmetric carboxylate stretch mode with the
CH bend mode of the formate bridging ligand.
For the water adduct species, partial hydrolysis is proposed to account for the changes in the observed
carboxylic stretch modes.
Appropriate experiments are suggested to verify the mode assignments that are not directly explained
by the ab initio calculations, the available experimental results or other means like deuteration
experiments.
Faser-Kunststoff-Verbunde (FKV) sind in der Luftfahrt etabliert, wohingegen andere
Branchen diese aufgrund der hohen Kosten nur zögerlich einsetzen. Die hohen Betriebskosten
von Flugzeugen, die sich vorrangig durch Leichtbau reduzieren lassen,
erlauben kostenintensivere Lösungen als die Kostenstrukturen in anderen Branchen.
Die Mehrkosten sind neben dem Leichtbau der entscheidende Faktor für den Einsatz
von FKV-Strukturen außerhalb der Luftfahrtbranche. Während in der Luftfahrtbranche
üblicherweise Niete zur Krafteinleitung eingesetzt werden und diese nur eine
Demontage eines Bauteils durch Aufbohren zulassen, genügen Niete den Ansprüchen
anderer Branchen nicht, da ein hoher Demontageaufwand durch das Aufbohren
hohe Kosten mit sich zieht. Aus diesem Grund erfordert es preisgünstige und qualitative
Lösungen, die eine lösbare Verbindung ermöglichen. In den meisten Branchen
werden daher, im Gegensatz zur Luftfahrt, traditionell reibschlüssige Schraubenverbindungen
für metallische Bauteile verwendet. Für reibschlüssige Schraubenverbindungen,
die zur Krafteinleitung in FKV-Strukturen genutzt werden, sind dem Stand
der Forschung nach kaum Erkenntnisse vorhanden.
Daher ist es Gegenstand dieser Arbeit aufzuzeigen, wie durch eine Erhöhung des
Reibwerts bei reibschlüssigen Krafteinleitungen in FKV-Bauteilen eine Verbesserung
der statischen und zyklischen Verbindungsfestigkeit erreicht werden kann. Um den
zuverlässigen Einsatz von reibschlüssigen Schraubenverbindungen zu ermöglichen,
werden außerdem die maximal zulässige Flächenpressung und der Vorspannkraftverlust
an FKV-Proben ermittelt. Dabei bilden experimentelle Ergebnisse eine Basis,
anhand derer aufgezeigt wird, inwieweit analytische Modelle genutzt werden können,um die reibschlüssige Krafteinleitung in FKV abzubilden.
Zunächst wird der Haftreibwert zwischen Stahl und FKV experimentell untersucht,
um Konzepte zur Steigerung des Reibwerts zu quantifizieren. Durch die experimentelle
Ermittlung einer maximal zulässigen Flächenpressung für die verwendeten FKVMaterialien
werden Schädigungen infolge zu hoher Vorspannkräfte vermieden. Dazu
werden FKV- Proben mit einem Stempel belastet und mit Hilfe der Schallemissionsmethode
Schädigungen detektiert, zu dem Zweck eine Belastungsgrenze zu definieren. Versuche zur Bestimmung des Vorspannkraftverlusts an FKV-Proben zeigen,
dass die Vorspannkraft durch Setzen und Kriechen zwar reduziert wird, dies aber in
vertretbarem Maße. Darüber hinaus lässt sich in den Versuchen beobachten, dass
das Setzen deutlich von der Oberflächenbeschaffenheit bestimmt wird. Um die Einflüsse
des Matrixwerkstoffs, des Reibwerts, der Passung und der Vorspannkraft auf
die Kraftübertragung in der Schraubverbindung zu prüfen, werden außerdem
doppellaschige Zugscherversuche durchgeführt.
An geklemmten FKV-Bauteilen im Fahrradbau lassen sich Defizite bei der Auslegung
dieser Bauteile und ihrer Anbindungstechnologie feststellen. Da der Verbindung zwischen
Vorbau und Gabelschaft besondere sicherheitsrelevante Bedeutung zukommt,
wird eine marktübliche Gabelschaft-Vorbau-Klemmung im Rahmen dieser Arbeit experimentell
und numerisch auf die Belastungen durch die Montage sowie im Betrieb
untersucht. Es kann dargelegt werden, dass ein komplexer Belastungszustand in der
genannten Klemmverbindung vorliegt, der numerisch abgebildet werden kann. Auf
Basis des validierten Finite-Element-Modells kann gezeigt werden, dass die Steigerung
des Reibwerts ein deutliches Potential aufweist um die Werkstoffanstrengung
zu reduzieren. Zur experimentellen Absicherung dieser Beobachtung, werden quasistatische
und zyklische Untersuchungen an Vorbau-Gabelschaft-Baugruppen durchgeführt,
bei denen der Reibwert durch die Applikation von Schmierfett und
Carbonmontagepaste variiert wird. Durch die Verwendung von Carbonmontagepaste
bzw. bei einem höheren Reibwert steigt sowohl die quasi-statische Festigkeit als
auch die Lebensdauer im Vergleich zum Einsatz von Schmierfett deutlich an.
Fiber reinforced plastics (FRP) are well established materials in the aviation industry,
whereas in other industries these materials are not yet this commonly used due to
the comparatively high costs. The high operating costs of aircrafts can be reduced
primarily through lightweight design, which allows the choice of more expensive solutions
than in other industries. The additional costs are beside the weight savings the
deciding factor for the use of FRP structures beyond the aviation sector. Since normally
rivets are used in the aviation industry to join components, the dismantling of
these riveted structures needs drilling. Hence rivets are insufficient for the demands
of other sectors due to the high disassembly costs caused by the high disassembly
effort. For this reason affordable solutions that permit an easy disassembly procedure
are essential for a wider application of FRP structures. Therefore – in most sectors
– preloaded bolted joints are used for the assembly of metallic components, in
contrast to aviation. For preloaded bolted joints in combination with FRP structures
almost no information is available by the current state of scientific knowledge
Therefore in this work it is investigated how an improvement of the static and cyclic
connection strength can be achieved by increasing the coefficient of friction at preloaded
bolted joints on FRP components. To enable a reliable application of preloaded
bolted joints the maximum allowable surface pressure and the loss of the preload
force of FRP specimens are determined. Therefore experimental results provide the
basis to study if analytical computation can be used to describe bolted joints on FRP
structures.
The coefficient of friction between steel and FRP is experimentally investigated in
order to quantify concepts that aim to increase the coefficient of friction. An experimental
determination of the maximum permissible surface pressure of the used FRP
materials avoids damage by excessive bolt preload. Therefore FRP specimens are
tested and a simultaneous detection of damage is performed by using the acoustic
emission method.
An experimentalinvestigation of the loss of bolt preload shows that the preload is
reduced by embedding and material relaxation but in an acceptable manner. In addition it can be observed that the embedding of the contact surfaces is significantly dependent
on the surface condition of the specimens. To analyze the influence of the
matrix material, the coefficient of friction, the clearance and the bolt preload to a bolted
joint, double lap tensile shear tests are performed.
Clamped FRP components used on bicycles show shortcomings in the design of these
components and their connection technology. Since the connection between stem
and steerer has a significant impact on safety, a standard stem/steerer connection is
investigated both experimentally and numerically considering the stresses during the
assembling as well as during operation. It can be demonstrated that this connection
has a complex load condition and a finite element analysis can describe this connection
sufficiently. Based on the validated finite element model it can be shown that an
increasing coefficient of friction has a significant potential for the reduction of the material
effort of the FRP steerer.
To validate these theoretical observations, quasi-static and cyclic tests on
stem/steerer assemblies are carried out. Thereby the coefficient of friction is varied
by the application of grease and carbon assembly paste. By the use of carbon assembly
paste (high coefficient of friction) both the quasi-static strength as well as the
operating life increases in comparison to the use of grease (low coefficient of friction).
Die Einführung des Internets hat einen stetigen Wandel des täglichen,
sowie beruflichen Alltags verursacht. Hierbei ist eine deutliche Verlagerung
in den virtuellen Raum (Internet) festzustellen. Zusätzlich hat
die Einführung von sozialen Netzwerken, wie beispielsweise Facebook
das Verlangen des Nutzers immer „online“ zu sein, deutlich verstärkt.
Hinzu kommen die kontinuierlich wachsenden Datenmengen, welche beispielsweise
durch Videostreaming (YouTube oder Internet Protocol Television
(IPTV)) oder den Austausch von Bildern verursacht werden.
Zusätzlich verursachen neue Dienste, welche beispielsweise im Rahmen
vom Internet der Dinge und auch Industrie 4.0 eingeführt werden, zusätzliche
Datenmengen. Aktuelle Technologien wie Long Term Evolution
Advanced (LTE-A) im Funkbereich und Very High Speed Digital Subsciber
Line (VDSL) beziehungsweise Glasfaser in kabelgebundenen Netzen,
versuchen diesen Anforderungen gerecht zu werden.
Angesichts der steigenden Anforderungen an die Mobilität des Nutzers,
ist die Verwendung von Funktechnologien unabdingbar. In Verbindung
mit dem stetig wachsenden Datenaufkommen und den ansteigenden
Datenraten ist ein wachsender Bedarf an Spektrum, also freien,
beziehungsweise ungenutzten Frequenzbereichen einhergehend. Für die
Identifikation geeigneter Bereiche müssen allerdings eine Vielzahl von
Parametern und Einflussfaktoren betrachtet werden. Einer der entscheidenden
Parameter ist die entstehende Dämpfung im betrachteten Frequenzbereich,
da diese mit steigender Frequenz größer wird und somit
die resultierende Abdeckung bei gleichbleibender Sendeleistung sinkt.
In aktuellen Funksystemen werden Frequenzen < 6 GHz verwendet, da
diese von den Ausbreitungseigenschaften geeignete Eigenschaften aufweisen.
Des Weiteren müssen vorhandene Nutzungsrechte, Inhaber des
Spektrums, Nutzungsbedingungen und so weiter im Vorfeld abgeklärt
werden. In Deutschland wird die Koordination von der Bundesnetzagentur
vorgenommen.
Aufgrund der Vielfalt der vorhandenen Dienste und Anwendungen ist
es leicht ersichtlich, dass der Frequenzbereich < 6 GHz stark ausgelastet
ist. Neben den kontinuierlich ausgelasteten Diensten wie zum Beispiel
Long Term Evolution (LTE) oder Digital Video Broadcast (DVB), gibt
es spektrale Bereiche, die nur eine geringe zeitliche Auslastung aufweisen.
Markant hierfür sind Frequenzbereiche, welche beispielsweise ausschließlich
für militärische Nutzung reserviert sind. Bei genauerer Betrachtung
fällt auf, dass sich dies nicht ausschließlich auf den zeitlichen Bereich
beschränkt, vielmehr ergibt sich eine Kombination aus zeitlicher und
räumlicher Beschränkung, da die Nutzung meist auf einen räumlichen
Bereich eingrenzbar ist. Eine weitere Einschränkung resultiert aus der
derzeit starren Vergabe von Frequenzbereichen. Die Zuteilung basiert
auf langwierigen Antragsverfahren und macht somit eine kurzfristige variable
Zuteilung unmöglich.
Um diesem Problem gerecht zu werden, erfolgt im Rahmen dieser Arbeit
die Entwicklung eines generischen Spektrum-Management-Systems
(SMSs) zur dynamischen Zuteilung vorhandener Ressourcen. Eine Anforderung
an das System ist die Unterstützung von bereits bekannten
Spektrum Sharing Verfahren, wie beispielsweise Licensed Shared Access
(LSA) beziehungsweise Authorized Shared Access (ASA) oder Spectrum
Load Smoothing (SLS). Hierfür wird eine Analyse der derzeit bekannten
Sharing Verfahren vorgenommen und diese bezüglich ihrer Anwendbarkeit
charakterisiert. DesWeiteren werden die Frequenzbereiche unterhalb
6 GHz hinsichtlich ihrer Verwendbarkeiten und regulatorischen Anforderungen
betrachtet. Zusätzlich wird ein erweiterter Anforderungskatalog
an das Spektrum-Management-System (SMS) entwickelt, welcher
als Grundlage für das Systemdesign verwendet wird. Essentiell ist hierbei,
dass alle (potentiellen) Nutzer beziehungsweise Inhaber eines spektralen
Bereiches die Funktionalität eines derartigen Systems verwenden
können. Hieraus ergibt sich bereits die Anforderung der Skalierbarkeit
des Systems. Zur Entwicklung einer geeigneten Systemarchitektur werden
bereits vorhandene Lösungsansätze zur Verwaltung und Speicherung
von Daten hinsichtlich ihrer Anwendbarkeit verglichen und bewertet.
Des Weiteren erfolgt die Einbeziehung der geografischen Position.
Um dies adäquat gewährleisten zu können, werden hierarchische Strukturen
in Netzwerken untersucht und auf ihre Verwendbarkeit geprüft.
Das Ziel dieser Arbeit ist die Entwicklung eines Spektrum-Management-
Systems (SMSs) durch Adaption bereits vorhandener Technologien und
Verfahren, sowie der Berücksichtigung aller definierten Anforderungen.
Es hat sich gezeigt, dass die Verwendung einer zentralisierten Broker-
Lösung nicht geeignet ist, da die Verzögerungszeit einen exponentiellförmigen
Verlauf bezüglich der Anzahl der Anfragen aufweist und somit
nicht skaliert. Dies kann mittels einer Distributed Hash Table (DHT)-
basierten Erweiterung überwunden werden ohne dabei die Funktionalität
der Broker-Lösung einzuschränken. Für die Einbringung der Geoinformation
hat sich die hierarchische Struktur, vergleichbar zum Domain
Naming Service (DNS) als geeignet erwiesen.
Als Parameter für die Evaluierung hat sich die resultierende Zugriffszeit,
das heißt die Zeit welche das System benötigt um Anfragen zu
bearbeiten, sowie die resultierende Anzahl der versorgbaren Nutzer herausgestellt.
Für die Simulation wird ein urbanes Areal mit fünf Gebäuden
betrachtet. In der Mitte befindet sich ein sechsstöckiges Firmengebäude,
welches in jedem Stockwerk mit einem Wireless Local Area Network Access
Point (WLAN-AP) ausgestattet ist. Umliegend befinden sich vier
Privathäuser, welche jeweils mit einem WLAN-AP ausgestattet sind.
Das komplette Areal wird von drei Mobilfunkbetreibern mit je einer
Basisstation (BS) versorgt. Als Ausgangspunkt für die Evaluierung erfolgt
der Betrieb ohne SMS. Aus den Ergebnissen wird deutlich, dass
eine Überlastung der Long Term Evolution Basisstationen (LTE-BSen)
vorliegt (im Speziellen bei Betreiber A und B). Im zweiten Durchlauf
wird das Szenario mit einem SMS betrachtet. Zusätzlich kommen in diesem
Fall noch Mikro Basisstationen (Mikro-BSen) zum Einsatz, welche
von der Spezifikation vergleichbar zu einem Wireless Local Area Network
(WLAN) sind. Hier zeigt sich ein deutlich ausgewogeneres Systemverhalten.
Alle BSen und Access Points (APs) befinden sich deutlich
unterhalb der Volllastgrenze.
Die Untersuchungen im Rahmen dieser Arbeit belegen, dass ein heterogenes,
zeitweise überlastetes Funksystem, vollständig harmonisiert
werden kann. Des Weiteren ermöglicht der Einsatz eines SMSs die effiziente
Verwendung von temporär ungenutzten Frequenzbereichen (sogenannte
White- und Gray-spaces).
Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.
Numerical Godeaux surfaces are minimal surfaces of general type with the smallest possible numerical invariants. It is known that the torsion group of a numerical Godeaux surface is cyclic of order \(m\leq 5\). A full classification has been given for the cases \(m=3,4,5\) by the work of Reid and Miyaoka. In each case, the corresponding moduli space is 8-dimensional and irreducible.
There exist explicit examples of numerical Godeaux surfaces for the orders \(m=1,2\), but a complete classification for these surfaces is still missing.
In this thesis we present a construction method for numerical Godeaux surfaces which is based on homological algebra and computer algebra and which arises from an experimental approach by Schreyer. The main idea is to consider the canonical ring \(R(X)\) of a numerical Godeaux surface \(X\) as a module over some graded polynomial ring \(S\). The ring \(S\) is chosen so that \(R(X)\) is finitely generated as an \(S\)-module and a Gorenstein \(S\)-algebra of codimension 3. We prove that the canonical ring of any numerical Godeaux surface, considered as an \(S\)-module, admits a minimal free resolution whose middle map is alternating. Moreover, we show that a partial converse of this statement is true under some additional conditions.
Afterwards we use these results to construct (canonical rings of) numerical Godeaux surfaces. Hereby, we restrict our study to surfaces whose bicanonical system has no fixed component but 4 distinct base points, in the following referred to as marked numerical Godeaux surfaces.
The particular interest of this thesis lies on marked numerical Godeaux surfaces whose torsion group is trivial. For these surfaces we study the fibration of genus 4 over \(\mathbb{P}^1\) induced by the bicanonical system. Catanese and Pignatelli showed that the general fibre is non-hyperelliptic and that the number \(\tilde{h}\) of hyperelliptic fibres is bounded by 3. The two explicit constructions of numerical Godeaux surfaces with a trivial torsion group due to Barlow and Craighero-Gattazzo, respectively, satisfy \(\tilde{h} = 2\).
With the method from this thesis, we construct an 8-dimensional family of numerical Godeaux surfaces with a trivial torsion group and whose general element satisfy \(\tilde{h}=0\).
Furthermore, we establish a criterion for the existence of hyperelliptic fibres in terms of a minimal free resolution of \(R(X)\). Using this criterion, we verify experimentally the
existence of a numerical Godeaux surface with \(\tilde{h}=1\).
The growing computational power enables the establishment of the Population Balance Equation (PBE)
to model the steady state and dynamic behavior of multiphase flow unit operations. Accordingly, the twophase
flow
behavior inside liquid-liquid extraction equipment is characterized by different factors. These
factors include: interactions among droplets (breakage and coalescence), different time scales due to the
size distribution of the dispersed phase, and micro time scales of the interphase diffusional mass transfer
process. As a result of this, the general PBE has no well known analytical solution and therefore robust
numerical solution methods with low computational cost are highly admired.
In this work, the Sectional Quadrature Method of Moments (SQMOM) (Attarakih, M. M., Drumm, C.,
Bart, H.-J. (2009). Solution of the population balance equation using the Sectional Quadrature Method of
Moments (SQMOM). Chem. Eng. Sci. 64, 742-752) is extended to take into account the continuous flow
systems in spatial domain. In this regard, the SQMOM is extended to solve the spatially distributed
nonhomogeneous bivariate PBE to model the hydrodynamics and physical/reactive mass transfer
behavior of liquid-liquid extraction equipment. Based on the extended SQMOM, two different steady
state and dynamic simulation algorithms for hydrodynamics and mass transfer behavior of liquid-liquid
extraction equipment are developed and efficiently implemented. At the steady state modeling level, a
Spatially-Mixed SQMOM (SM-SQMOM) algorithm is developed and successfully implemented in a onedimensional
physical spatial domain. The integral spatial numerical flux is closed using the mean mass
droplet diameter based on the One Primary and One Secondary Particle Method (OPOSPM which is the
simplest case of the SQMOM). On the other hand the hydrodynamics integral source terms are closed
using the analytical Two-Equal Weight Quadrature (TEqWQ). To avoid the numerical solution of the
droplet rise velocity, an analytical solution based on the algebraic velocity model is derived for the
particular case of unit velocity exponent appearing in the droplet swarm model. In addition to this, the
source term due to mass transport is closed using OPOSPM. The resulting system of ordinary differential
equations with respect to space is solved using the MATLAB adaptive Runge–Kutta method (ODE45). At
the dynamic modeling level, the SQMOM is extended to a one-dimensional physical spatial domain and
resolved using the finite volume method. To close the mathematical model, the required quadrature nodes
and weights are calculated using the analytical solution based on the Two Unequal Weights Quadrature
(TUEWQ) formula. By applying the finite volume method to the spatial domain, a semi-discreet ordinary
differential equation system is obtained and solved. Both steady state and dynamic algorithms are
extensively validated at analytical, numerical, and experimental levels. At the numerical level, the
predictions of both algorithms are validated using the extended fixed pivot technique as implemented in
PPBLab software (Attarakih, M., Alzyod, S., Abu-Khader, M., Bart, H.-J. (2012). PPBLAB: A new
multivariate population balance environment for particulate system modeling and simulation. Procedia
Eng. 42, pp. 144-562). At the experimental validation level, the extended SQMOM is successfully used
to model the steady state hydrodynamics and physical and reactive mass transfer behavior of agitated
liquid-liquid extraction columns under different operating conditions. In this regard, both models are
found efficient and able to follow liquid extraction column behavior during column scale-up, where three
column diameters were investigated (DN32, DN80, and DN150). To shed more light on the local
interactions among the contacted phases, a reduced coupled PBE and CFD framework is used to model
the hydrodynamic behavior of pulsed sieve plate columns. In this regard, OPOSPM is utilized and
implemented in FLUENT 18.2 commercial software as a special case of the SQMOM. The dropletdroplet
interactions
(breakage
and
coalescence)
are
taken
into
account
using
OPOSPM,
while
the
required
information
about
the
velocity
field
and
energy
dissipation
is
calculated
by
the
CFD
model.
In
addition
to
this,
the proposed coupled OPOSPM-CFD framework is extended to include the mass transfer. The
proposed framework is numerically tested and the results are compared with the published experimental
data. The required breakage and coalescence parameters to perform the 2D-CFD simulation are estimated
using PPBLab software, where a 1D-CFD simulation using a multi-sectional gird is performed. A very
good agreement is obtained at the experimental and the numerical validation levels.
The Symbol Grounding Problem (SGP) is one of the first attempts to proposed a hypothesis about mapping abstract concepts and the real world. For example, the concept "ball" can be represented by an object with a round shape (visual modality) and phonemes /b/ /a/ /l/ (audio modality).
This thesis is inspired by the association learning presented in infant development.
Newborns can associate visual and audio modalities of the same concept that are presented at the same time for vocabulary acquisition task.
The goal of this thesis is to develop a novel framework that combines the constraints of the Symbol Grounding Problem and Neural Networks in a simplified scenario of association learning in infants. The first motivation is that the network output can be considered as numerical symbolic features because the attributes of input samples are already embedded. The second motivation is the association between two samples is predefined before training via the same vectorial representation. This thesis proposes to associate two samples and the vectorial representation during training. Two scenarios are considered: sample pair association and sequence pair association.
Three main contributions are presented in this work.
The first contribution is a novel Symbolic Association Model based on two parallel MLPs.
The association task is defined by learning that two instances that represent one concept.
Moreover, a novel training algorithm is defined by matching the output vectors of the MLPs with a statistical distribution for obtaining the relationship between concepts and vectorial representations.
The second contribution is a novel Symbolic Association Model based on two parallel LSTM networks that are trained on weakly labeled sequences.
The definition of association task is extended to learn that two sequences represent the same series of concepts.
This model uses a training algorithm that is similar to MLP-based approach.
The last contribution is a Classless Association.
The association task is defined by learning based on the relationship of two samples that represents the same unknown concept.
In summary, the contributions of this thesis are to extend Artificial Intelligence and Cognitive Computation research with a new constraint that is cognitive motivated. Moreover, two training algorithms with a new constraint are proposed for two cases: single and sequence associations. Besides, a new training rule with no-labels with promising results is proposed.
Der Einstieg in ein kommunales Starkregenrisikomanagement muss über eine fundierte Risikoanalyse erfolgen, die mögliche Gefährdungen, Objektbetroffenheiten und Schadenspotenziale identifiziert und bewertet. GIS-basierte Verfahren stellen hierfür vergleichsweise einfache, effiziente Werkzeuge dar, deren Ergebnisse jedoch erheblich von subjektiven Festlegungen, der Qualität der Eingangsdaten und methodischen Einzelaspekten abhängen. Im Gegensatz zur vergleichsweise zuverlässig quantifizierbaren Gefährdung entzieht sich die Objektvulnerabilität bislang mangels Daten noch einer gebietsweiten Beurteilung. Auch die Ersatzgröße Schadenspotenzial lässt sich nur schwer auf mikroskaliger Ebene erfassen.
Das im Rahmen dieser Arbeit entwickelte Gesamtkonzept einer GIS-basierten Risikoanalyse widmet sich zum einen einer methodischen Vertiefung der einzelnen Arbeitsschritte und analysiert die Auswirkungen unterschiedlicher Festlegungen auf die generierten Ergebnisse. Ein Hauptaugenmerk liegt dabei auf dem Einfluss der Eingangsdaten und deren optimaler Verwertung. Parallel dazu werden die Abbildungsdefizite der Vulnerabilität näher untersucht und Vorschläge für eine methodische Verbesserung der gebietsweiten Schadenspotenzialanalyse ausgearbeitet. Beide Schritte münden in Empfehlungen zur Anwendung sowie zur Ergebnisverwertung im Zuge der weiterführenden Risikokommunikation.
Die Untersuchungen zeigen, dass vor allem die Vorglättung des Oberflächenmodells (DOM) das Gefährdungsergebnis prägt und dass für Senken und Fließwege unterschiedliche DOM-Aufbereitungen erforderlich sind. Ferner darf die methodische Berücksichtigung weiterer gefährdungsrelevanter Parameter nicht die Effizienz und Handhabungsvorteile beeinträchtigen. Die Abbildung von Vulnerabilitäten auf Objektebene scheitert vorrangig an mangelnden Angaben zur Objektanfälligkeit und zur Bewältigungskapazität, während sich Schadenspotenziale sehr grob anhand von Nutzungsdaten abschätzen lassen. Eine bessere Objektivierung der Schadenspotenzialanalyse lässt sich erreichen, wenn dieses getrennt nach Vulnerabilitätsdimensionen bewertet wird und wenn dazu charakteristische Schadenstypen als Hilfsgrößen der Bewertung verwendet werden.
Risikobewertungen sind vorrangig vulnerabilitätsbezogen, d. h. mit Fokus auf möglichen Schadensausmaße und Präventionsmaßnahmen durchzuführen. Dies kann jedoch nur auf Objektebene, konkret durch bzw. mit dem potenziell Betroffenen erfolgen. Damit wird die Risikoanalyse zwangsläufig zu einem gemeinsamen Prozess und Dialog zwischen kommunaler Verantwortung zu Information und Aufklärung auf der einen Seite und individueller Eigenverantwortung und Risikoakzeptanz auf der anderen Seite.
In recent years, enormous progress has been made in the field of Artificial Intelligence (AI). Especially the introduction of Deep Learning and end-to-end learning, the availability of large datasets and the necessary computational power in form of specialised hardware allowed researchers to build systems with previously unseen performance in areas such as computer vision, machine translation and machine gaming. In parallel, the Semantic Web and its Linked Data movement have published many interlinked RDF datasets, forming the world’s largest, decentralised and publicly available knowledge base.
Despite these scientific successes, all current systems are still narrow AI systems. Each of them is specialised to a specific task and cannot easily be adapted to all other human intelligence tasks, as would be necessary for Artificial General Intelligence (AGI). Furthermore, most of the currently developed systems are not able to learn by making use of freely available knowledge such as provided by the Semantic Web. Autonomous incorporation of new knowledge is however one of the pre-conditions for human-like problem solving.
This work provides a small step towards teaching machines such human-like reasoning on freely available knowledge from the Semantic Web. We investigate how human associations, one of the building blocks of our thinking, can be simulated with Linked Data. The two main results of these investigations are a ground truth dataset of semantic associations and a machine learning algorithm that is able to identify patterns for them in huge knowledge bases.
The ground truth dataset of semantic associations consists of DBpedia entities that are known to be strongly associated by humans. The dataset is published as RDF and can be used for future research.
The developed machine learning algorithm is an evolutionary algorithm that can learn SPARQL queries from a given SPARQL endpoint based on a given list of exemplary source-target entity pairs. The algorithm operates in an end-to-end learning fashion, extracting features in form of graph patterns without the need for human intervention. The learned patterns form a feature space adapted to the given list of examples and can be used to predict target candidates from the SPARQL endpoint for new source nodes. On our semantic association ground truth dataset, our evolutionary graph pattern learner reaches a Recall@10 of > 63 % and an MRR (& MAP) > 43 %, outperforming all baselines. With an achieved Recall@1 of > 34% it even reaches average human top response prediction performance. We also demonstrate how the graph pattern learner can be applied to other interesting areas without modification.
Though environmental inequality research has gained extensive interest in the United States, it has received far less attention in Europe and Germany. The main objective of this book is to extend the research on environmental inequality in Germany. This book aims to shed more light on the question of whether minorities in Germany are affected by a disproportionately high burden of environmental pollution, and to increase the general knowledge about the causal mechanisms, which contribute to the unequal distribution of environmental hazards across the population.
To improve our knowledge about environmental inequality in Germany, this book extends previous research in several ways. First, to evaluate the extent of environmental inequality, this book relies on two different data sources. On the on hand, it uses household-level survey data and self-reports about the impairment through air pollution. On the other hand, it combines aggregated census data and objective register-based measures of industrial air pollution by using geographic information systems (GIS). Consequently, this book offers the first analysis of environmental inequality on the national level that uses objective measures of air pollution in Germany. Second, to evaluate the causes of environmental inequality, this book applies a panel data analysis on the household level, thereby offering the first longitudinal analysis of selective migration processes outside the United States. Third, it compares the level of environmental inequality between German metropolitan areas and evaluates to which extent the theoretical arguments of environmental inequality can explain differing levels of environmental inequality across the country. By doing so, this book not only investigates the impact of indicators derived by the standard strand of theoretical reasoning but also includes structural characteristics of the urban space.
All studies presented in this book confirm the disproportionate exposure of minorities to environmental pollution. Minorities live in more polluted areas in Germany but also in more polluted parts of the communities, and this disadvantage is most severe in metropolitan regions. Though this book finds evidence for selective migration processes contributing to the disproportionate exposure of minorities to environmental pollution, it also stresses the importance of urban conditions. Especially cities with centrally located industrial facilities yield a high level of environmental inequality. This poses the question of whether environmental inequality might be the result of two independent processes: 1) urban infrastructure confines residential choices of minorities to the urban core, and 2) urban infrastructure facilitates centrally located industries. In combination, both processes lead to a disproportionate burden of minority households.
Tables or ranked lists summarize facts about a group of entities in a concise and structured fashion. They are found in all kind of domains and easily comprehensible by humans. Some globally prominent examples of such rankings are the tallest buildings in the World, the richest people in Germany, or most powerful cars. The availability of vast amounts of tables or rankings from open domain allows different ways to explore data. Computing similarity between ranked lists, in order to find those lists where entities are presented in a similar order, carries important analytical insights. This thesis presents a novel query-driven Locality Sensitive Hashing (LSH) method, in order to efficiently find similar top-k rankings for a given input ranking. Experiments show that the proposed method provides a far better performance than inverted-index--based approaches, in particular, it is able to outperform the popular prefix-filtering method. Additionally, an LSH-based probabilistic pruning approach is proposed that optimizes the space utilization of inverted indices, while still maintaining a user-provided recall requirement for the results of the similarity search. Further, this thesis addresses the problem of automatically identifying interesting categorical attributes, in order to explore the entity-centric data by organizing them into meaningful categories. Our approach proposes novel statistical measures, beyond known concepts, like information entropy, in order to capture the distribution of data to train a classifier that can predict which categorical attribute will be perceived suitable by humans for data categorization. We further discuss how the information of useful categories can be applied in PANTHEON and PALEO, two data exploration frameworks developed in our group.