### Filtern

#### Erscheinungsjahr

- 1998 (35) (entfernen)

#### Dokumenttyp

- Preprint (30)
- Vorlesung (3)
- Wissenschaftlicher Artikel (1)
- Diplomarbeit (1)

#### Schlagworte

- coset enumeration (2)
- particle methods (2)
- subgroup problem (2)
- Analysis (1)
- Boltzmann Equation (1)
- CFD (1)
- Complexity (1)
- Dirichlet series (1)
- Funktionalanalysis (1)
- Gröbner base (1)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (35) (entfernen)

In order to improve the distribution system for the Nordic countries the BASF AG considered 13 alternative scenarios to the existing system. These involved the construction of warehouses at various locations. For every scenario the transportation, storage, and handling cost incurred was to be as low as possible, where restrictions on the delivery time were given. The scenarios were evaluated according to (minimal) total cost and weighted average delivery time. The results led to a restriction to only three cases, involving only one new warehouse each. For these a more accurate model for the cost was developped and evaluated, yielding results similar to a simple linear model. Since there were no clear preferences between cost and delivery time, the final decision was chosen to represent a compromise between the two criteria.

Robust facility location
(1998)

Let A be a nonempty finite subset of R^2 representing the geographical coordinates of a set of demand points (towns, ...), to be served by a facility, whose location within a given region S is sought. Assuming that the unit cost for a in A if the facility is located at x in S is proportional to dist(x,a) - the distance from x to a - and that demand of point a is given by w_a, minimizing the total trnsportation cost TC(w,x) amounts to solving the Weber problem. In practice, it may be the case, however, that the demand vector w is not known, and only an estimator {hat w} can be provided. Moreover the errors in sich estimation process may be non-negligible. We propose a new model for this situation: select a threshold valus B 0 representing the highest admissible transportation cost. Define the robustness p of a location x as the minimum increase in demand needed to become inadmissible, i.e. p(x) = min{||w^*-{hat w}|| : TC(w^*,x) B, w^* = 0} and solve then the optimization problem max_{x in S} p(x) to get the most robust location.

Knowledge about the distribution of a statistical estimator is important for various purposes like, for example, the construction of confidence intervals for model parameters or the determiation of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap which is based on an imitation of the probabilistic structure of the data generating process on the basis of the information provided by a given set of random observations. In this paper we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.

Monomial representations and operations for Gröbner bases computations are investigated from an implementation point of view. The technique ofvectorized monomial operations is introduced and it is shown how it expedites computations of Gröbner bases. Furthermore, a rank-based monomialrepresentation and comparison technique is examined and it is concluded that this technique does not yield an additional speedup over vectorizedcomparisons. Extensive benchmark tests with the Computer Algebra System SINGULAR are used to evaluate these concepts.

Groups can be studied using methods from different fields such as combinatorial group theory or string rewriting. Recently techniques from Gröbner basis theory for free monoid rings (non-commutative polynomial rings) respectively free group rings have been added to the set of methods due to the fact that monoid and group presentations (in terms of string rewriting systems) can be linked to special polynomials called binomials. In the same mood, the aim of this paper is to discuss the relation between Nielsen reduced sets of generators and the Todd-Coxeter coset enumeration procedure on the one side and the Gröbner basis theory for free group rings on the other. While it is well-known that there is a strong relationship between Buchberger's algorithm and the Knuth-Bendix completion procedure, and there are interpretations of the Todd-Coxeter coset enumeration procedure using the Knuth-Bendix procedure for special cases, our aim is to show how a verbatim interpretation of the Todd-Coxeter procedure can be obtained by linking recent Gröbner techniques like prefix Gröbner bases and the FGLM algorithm as a tool to study the duality of ideals. As a side product our procedure computes Nielsen reduced generating sets for subgroups in finitely generated free groups.

In this paper we study a particular class of \(n\)-node recurrent neural networks (RNNs).In the \(3\)-node case we use monotone dynamical systems theory to show,for a well-defined set of parameters, that,generically, every orbit of the RNN is asymptotic to a periodic orbit.Then, within the usual 'learning' context of NeuralNetworks, we investigate whether RNNs of this class can adapt their internal parameters soas to 'learn' and then replicate autonomously certain external periodic signals.Our learning algorithm is similar to identification algorithms in adaptivecontrol theory. The main feature of the adaptation algorithm is that global exponential convergenceof parameters is guaranteed. We also obtain partial convergence results in the \(n\)-node case.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.

In this paper we present a domain decomposition approach for the coupling of Boltzmann and Euler equations. Particle methods are used for both equations. This leads to a simple implementation of the coupling procedure and to natural interface conditions between the two domains. Adaptive time and space discretizations and a direct coupling procedure leads to considerable gains in CPU time compared to a solution of the full Boltzmann equation. Several test cases involving a large range of Knudsen numbers are numerically investigated.

In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.

In the present paper we investigate the Rayleigh-Benard convection in rarefied gases and demonstrate by numerical experiments the transition from purely thermal conduction to a natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We address to the problem how the critical value for the Rayleigh number defined for incompressible vsicous flows may be translated to rarefied gas flows. Moreover, the simulations obtained for a Knudsen number Kn=0.001 and Froude number Fr=1 show a further transition from regular Rayleigh-Benard cells to a pure unsteady behavious with moving vortices.

Application of Moment Realizability Criteria for Coupling of the Boltzmann and Euler Equations
(1998)

The moment realizability criteria have been used to test the domains of validity of the Boltzmann and Euler Equations. With the help of this criteria teh coupling of the Boltzmann and Euler equations have been performed in two dimensional spatial space. The time evolution of domain decompositions for such equations have been presented in different time steps. The numerical resulta obtained from the coupling code have been compared with those from the pure Boltzmann one.

In the following an introduction to the level set method will be givenso that one becomes aware of the arising problems, which lead to the needof reinitialization. The problems concerning reinitialization itself will be analysed more detailed and a solution for area loss will be proposed. This solution consists in a combination of the commonly used PDE for reinitialization and extrapolation around the zero level set. Numericalexperiments show rather satisfactory results as far as area loss and computation of curvature are concerned.

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to nancial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situation and that consistency results known for nonparametric errors- in-variables models carry over to the situation considered herein.

Rewriting techniques have been applied successfully to various areas of symbolic computation. Here we consider the notion of prefix-rewriting and give a survey on its applications to the subgroup problem in combinatorial group theory. We will see that for certain classes of finitely presented groups finitely generated subgroups can be described through convergent prefix-rewriting systems, which can be obtained from a presentation of the group considered and a set of generators for the subgroup through a specialized Knuth-Bendix style completion procedure. In many instances a finite presentation for the subgroup considered can be constructed from such a convergent prefix-rewriting system, thus solving the subgroup presentation problem. Finally we will see that the classical procedures for computing Nielsen reduced sets of generators for a finitely generated subgroup of a free group and the Todd-Coxeter coset enumeration can be interpreted as particular instances of prefix-completion. Further, both procedures are closely related to the computation of prefix Gr"obner bases for right ideals in free group rings.

Todd and Coxeter's method for enumerating cosets of finitely generated subgroups in finitely presented groups (abbreviated by Tc here) is one famous method from combinatorial group theory for studying the subgroup problem. Since prefix string rewriting is also an appropriate method to study this problem, prefix string rewriting methods have been compared to Tc. We recall and compare two of them briefly, one by Kuhn and Madlener [4] and one by Sims [15]. A new approach using prefix string rewriting in free groups is derived from the algebraic method presented by Reinert, Mora and Madlener in [14] which directly emulates Tc. It is extended to free monoids and an algebraic characterization for the "cosets" enumerated in this setting is provided.

We prove that there exists a positive \(\alpha\) such thatfor any integer \(\mbox{$d\ge 3$}\) and any topological types \(\mbox{$S_1,\dots,S_n$}\) of plane curve singularities, satisfying \(\mbox{$\mu(S_1)+\dots+\mu(S_n)\le\alpha d^2$}\), there exists a reduced irreducible plane curve of degree \(d\) with exactly \(n\) singular points of types \(\mbox{$S_1,\dots,S_n$}\), respectively. This estimate is optimal with respect to theexponent of \(d\). In particular, we prove that for any topological type \(S\) there exists an irreducible polynomial of degree \(\mbox{$d\le 14\sqrt{\mu(S)}$}\) having a singular point of type \(S\).

On a family F of probability measures on a measure space we consider the Hellinger and Kullback-Leibler distances. We show that under suitable regulari ty conditions Jeffreys' prior is proportional to the k-dimensional Hausdorff measure w.r.t. Hellinger dis tance respectively to the k2 -dimensional Hausdorff measure w.r.t. Kullback-Leibler distance. The proof i s based on an area-formula for the Hausdorff measure w.r.t. to generalized distances.

Bekanntlich gibt es keinen befriedigenden unendlich dimensionalen Ersatz für das Lebesgue-Mass. Andererseits lassen sich viele Techniken klassischer Analysis auch auf unendlich dimensionale Situationen übertragen. Eine Möglichkeit hierzu gibt die Theorie differenzierbarer Masse. Man definiert Richtungsableitungen für Masse ähnlich wie für Funktionen. Eines der zentralen Beispiele ist das Wiener-Mass. Stochastische Integration bezüglich der Brownschen Bewegung, insbesondere das Skorokhod-Integral ergeben sich in natürlicher Weise durch diesen Ansatz und auch die Grundideen des MalliavinKalküls lassen sich in diesem Rahmen einfach erläutern. Die Vorträge geben die meisten Beweise.

We propose a new discretization scheme for solving ill-posed integral equations of the third kind. Combining this scheme with Morozov's discrepancy principle for Landweber iteration we show that for some classes of equations in such method a number of arithmetic operations of smaller order than in collocation method is required to appoximately solve an equation with the same accuracy.

In this paper we study the space-time asymptotic behavior of the solutions and derivatives to th incompressible Navier-Stokes equations. Using moment estimates we obtain that strong solutions to the Navier-Stokes equations which decay in \(L^2\) at the rate of \(||u(t)||_2 \leq C(t+1)^{-\mu}\) will have the following pointwise space-time decay \[|D^{\alpha}u(x,t)| \leq C_{k,m} \frac{1}{(t+1)^{ \rho_o}(1+|x|^2)^{k/2}} \]
where \( \rho_o = (1-2k/n)( m/2 + \mu) + 3/4(1-2k/n)\), and \(|a |= m\). The dimension n is \(2 \leq n \leq 5\) and \(0\leq k\leq n\) and \(\mu \geq n/4\)

Functional Analysis
(1998)

The aim of this course is to give a very modest introduction to the extremely rich and well-developed theory of Hilbert spaces, an introduction that hopefully will provide the students with a knowledge of some of the fundamental results of the theory and will make them familiar with everything needed in order to understand, believe and apply the spectral theorem for selfadjoint operators in Hilbert space. This implies that the course will have to give answers to such questions as - What is a Hilbert space? - What is a bounded operator in Hilbert space? - What is a selfadjoint operator in Hilbert space? - What is the spectrum of such an operator? - What is meant by a spectral decomposition of such an operator?

Convex Analysis
(1998)

Preface Convex analysis is one of the mathematical tools which is used both explicitly and indirectly in many mathematical disciplines. However, there are not so many courses which have convex analysis as the main topic. More often, parts of convex analysis are taught in courses like linear or nonlinear optimization, probability theory, geometry, location theory, etc.. This manuscript gives a systematic introduction to the concepts of convex analysis. A focus is set to the geometrical interpretation of convex analysis. This focus was one of the reasons why I have decided to restrict myself to the finite dimensional case. Another reason for this restriction is that in the infinite dimensional case many proofs become more difficult and more technical. Therefore, it would not have been possible (for me) to cover all the topics I wanted to discuss in this introductory text in the infinite dimensional case, too. Anyway, I am convinced that even for someone who is interested in the infinite dimensional case this manuscript will be a good starting point. When I offered a course in convex analysis in the Wintersemester 1997/1998 (upon which this manuscript is based) a lot of students asked me how this course fits in their own studies. Because this manuscript will (hopefully) be used by some students in the future, I will give here some of the possible statements to answer this very question. - Convex analysis can be seen as an extension of classical analysis, in which still we get many of the results, like a mean-value theorem, with less assumptions on the smoothness of the function. - Convex analysis can be seen as a foundation of linear and nonlinear optimization which provides many tools to handle concepts in optimization much easier (for example the Lemma of Farkas). - Finally, convex analysis can be seen as a link between abstract geometry and very algorithmic oriented computational geometry. As already explained before, this manuscript is based on a one semester course and therefore cannot cover all topics and discuss all aspects of convex analysis in detail. To guide the interested reader I have included a list of nice books about this subject at the end of the manuscript. It should be noted that the philosophy of this course follows [3], [4] and THE BOOK of modern convex analysis [6]. The geometrical emphasis however, is also related to intentions of [1].^L

The Kallianpur-Robbins law describes the long term asymptotic behaviour of the distribution of the occupation measure of a Brownian motion in the plane. In this paper we show that this behaviour can be seen at every typical Brownian path by choosing either a random time or a random scale according to the logarithmic laws of order three. We also prove a ratio ergodic theorem for small scales outside an exceptional set of vanishing logarithmic density of order three.

The paper studies differential and related properties of functions of a real variable with values in the space of signed measures. In particular the connections between different definitions of differentiability are described corresponding to different topologies on the measures. Some conditions are given for the equivalence of the measures in the range of such a function. These conditions are in terms of socalled logarithmic derivatives and yield a generalization of the Cameron-Martin-Maruyama-Girsanov formula. Questions of this kind appear both in the theory of differentiable measures on infinite-dimensional spaces and in the theory of statistical experiments.

The flow of a liquid into an empty channel is simulated. The simulation is based on a recently published model for general fluid/liquid/solid systems which eliminates the shear stress singularity at the moving contact line between the liquid/fluid interface and the solid. This model is carefully analyzed for low Reynolds and Capillary numbers, adapted to the channel inflow problem, and implemented. Very convincing numerical results are presented.