### Filtern

#### Erscheinungsjahr

- 2009 (35) (entfernen)

#### Dokumenttyp

- Bericht (35) (entfernen)

#### Schlagworte

#### Fachbereich / Organisatorische Einheit

In this paper, we present a viscoelastic rod model that is suitable for fast and sufficiently accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (’stiff ’ dof), bending and torsion (’soft’ dof). For inner dissipation, a consistent damping potential from Antman is chosen. Our discrete model is based on a finite difference discretisation on a staggered grid. The right-hand side function f and the Jacobian ∂f/∂(q, v, t) of the dynamical system q˙ = v, v˙ = f(q, v, t) – after index reduction from three to zero – is free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore cheap to evaluate. For the time integration of the system, we use well established stiff solvers like RADAU5 or DASPK. As our model yields computation times within milliseconds, it is suitable for interactivemanipulation in ’virtual reality’ applications. In contrast to fast common VR rod models, our model reflects the structural mechanics solutions sufficiently correct, as comparison with ABAQUS finite element results shows.

Inspired by Kirchhoff’s kinetic analogy, the special Cosserat theory of rods is formulatedin the language of Lagrangian mechanics. A static rod corresponds to an abstract Lagrangian system where the energy density takes the role of the Lagrangian function. The equilibrium equations are derived from a variational principle. Noether’s theorem relates their first integrals to frame-indifference, isotropy and uniformity. These properties can be formulated in terms of Lie group symmetries. The rotational degrees of freedom, present in the geometrically exact beam theory, are represented in terms of orthonormal director triads. To reduce the number of unknowns, Lagrange multipliers associated with the orthonormality constraints are eliminated using null-space matrices. This is done both in the continuous and in the discrete setting. The discrete equilibrium equations are used to compute discrete rod configurations, where different types of boundary conditions can be handled.

For the numerical simulation of a mechanical multibody system (MBS), dynamical loads are needed as input data, such as a road profile. With given input quantities, the equations of motion of the system can be integrated. Output quantities for further investigations are calculated from the integration results. In this paper, we consider the corresponding inverse problem: We assume, that a dynamical system and some reference output signals are given. The general task is to derive an input signal, such that the system simulation produces the desired reference output. We present the state-of-the-art method in industrial applications, the iterative learning control method (ILC) and give an application example from automotive industry. Then, we discuss three alternative methods based on optimal control theory for differential algebraic equations (DAEs) and give an overview of their general scheme.

In the ground vehicle industry it is often an important task to simulate full vehicle models based on the wheel forces and moments, which have been measured during driving over certain roads with a prototype vehicle. The models are described by a system of differential algebraic equations (DAE) or ordinary differential equations (ODE). The goal of the simulation is to derive section forces at certain components for a durability assessment. In contrast to handling simulations, which are performed including more or less complex tyre models, a driver model, and a digital road profile, the models we use here usually do not contain the tyres or a driver model. Instead, the measured wheel forces are used for excitation of the unconstrained model. This can be difficult due to noise in the input data, which leads to an undesired drift of the vehicle model in the simulation.

Forderungen nach kürzeren Entwicklungszyklen bei gleichzeitig höherer Produktqualität führen in allen Bereichen der Nutzfahrzeugtechnik und insbesondere auch bei Baumaschinen zum verstärkten Einsatz von Simulationssoftware. Um in diesem Sinne Lebensdauerberechnungen durchführen zu können, sind jedoch genaue Kenntnisse über die im Kundeneinsatz auftretenden Betriebslasten und Beanspruchungen erforderlich. Für deren Ermittlung hat der Baumaschinenhersteller VOLVO Construction Equipment einen Mobilbagger umfassend mit Messtechnik ausgestattet, die neben den mechanischen Belastungen an der Arbeitsausrüstung auch wesentliche Kenndaten des Hydrauliksystems und des Fahrantriebs erfasst. Dieser Messbagger wurde bereits bei unterschiedlichen Kunden in Europa eingesetzt. Der Artikel beschreibt die methodische Vorgehensweise zur Verarbeitung der erfassten Daten und zur Generierung von repräsentativen Nutzungsprofilen am Beispiel der mechanischen Belastungen an der Arbeitseinrichtung, die im Wesentlichen vom Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM) erarbeitet wurde.

Safety and reliability requirements on the one side and short development cycles, low costs and lightweight design on the other side are two competing aspects of truck engineering. For safety critical components essentially no failures can be tolerated within the target mileage of a truck. For other components the goals are to stay below certain predefined failure rates. Reducing weight or cost of structures often also reduces strength and reliability. The requirements on the strength, however, strongly depend on the loads in actual customer usage. Without sufficient knowledge of these loads one needs large safety factors, limiting possible weight or cost reduction potentials. There are a lot of different quantities influencing the loads acting on the vehicle in actual usage. These ‘influencing quantities’ are, for example, the road quality, the driver, traffic conditions, the mission (long haulage, distribution or construction site), and the geographic region. Thus there is a need for statistical methods to model the load distribution with all its variability, which in turn can be used for the derivation of testing specifications.

In this paper, the model of Köttgen, Barkey and Socie, which corrects the elastic stress and strain tensor histories at notches of a metallic specimen under non-proportional loading, is improved. It can be used in connection with any multiaxial s -e -law of incremental plasticity. For the correction model, we introduce a constraint for the strain components that goes back to the work of Hoffmann and Seeger. Parameter identification for the improved model is performed by Automatic Differentiation and an established least squares algorithm. The results agree accurately both with transient FE computations and notch strain measurements.

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.