### Filtern

#### Erscheinungsjahr

- 2003 (63) (entfernen)

#### Dokumenttyp

- Bericht (24)
- Preprint (19)
- Dissertation (16)
- Wissenschaftlicher Artikel (1)
- Diplomarbeit (1)
- Teil eines Periodikums (1)
- Arbeitspapier (1)

#### Sprache

- Englisch (63) (entfernen)

#### Schlagworte

- AG-RESY (4)
- Wavelet (4)
- Mehrskalenanalyse (3)
- CAD (2)
- CHAMP (2)
- Gravitationsfeld (2)
- Inverses Problem (2)
- Lineare Algebra (2)
- Mathematikunterricht (2)
- Modellierung (2)

#### Fachbereich / Organisatorische Einheit

We propose several algorithms for efficient Testing of logical Implication in the case of ground objects. Because the problem of Testing a set of propositional formulas for (un)satisfiability is \(NP\)-complete there's strong evidence that there exist examples for which every algorithm which solves the problem of testing for (un)satisfiability has a runtime that is exponential in the length of the input. So will have our algorithms. We will therefore point out classes of logic programs for which our algorithms have a lower runtime. At the end of this paper we will give an outline of an algorithm for theory refinement which is based on the algorithms described above.

UML and SDL are languages for the development of software systems that have different origins, and have evolved separately for many years. Recently, it can be observed that OMG and ITU, the standardisation bodies responsible for UML and SDL, respectively, are making efforts to harmonise these languages. So far, harmonisation takes place mainly on a conceptual level, by extending and aligning the set of language concepts. In this paper, we argue that harmonisation of languages can be approached both from a syntactic and semantic perspective. We show how a common syntactical basis can be derived from the analysis of the UML meta-model
and the SDL abstract grammar. For this purpose, conceptually sound and well-founded mappings from meta-models to abstract grammars and vice versa are defined and applied. On the semantic level, a comparison between corresponding language constructs is performed.

This report explains basic notions and concepts of Abstract State Machines (ASM) as well as notation for defining ASM models. The objective here is to provide an intuitive understanding of the formalism; for a rigorous definition of the mathematical foundations of ASM, the reader is referred to [2] and [3]. Further references on ASM-related material can be found on the ASM Web Pages [1].

A hub location problem consists of locating p hubs in a network in order to collect and consolidate flow between node pairs. This thesis deals with the uncapacitated single allocation p-hub center problem (USApHCP) as a special type of hub location problem with min max objective function. Using the so-called radius formulation of the problem, the dimension of the polyhedron of USApHCP is derived. The formulation constraints are investigated to find out which of these define facets. Then, three new classes of facet-defining inequalities are derived. Finally, efficient procedures to separate facets in a branch-and-cut algorithm are proposed. The polyhedral analysis of USApHCP is based on a tight relation to the uncapacitated facility location problem (UFL). Hence, many results stated in this thesis also hold for UFL.

In recent years a considerable attention was paid to an investigation of finite orders relative to different properties of their isotone functions [2,3]. Strict order relations are defined as strict asymmetric and transitive binary relations. Some algebraic properties of strict orders were already studied in [6]. For the class K of so-called 2-series strict orders we describe the partially ordered set EndK of endomorphism monoids, ordered by inclusion. It is obtained that EndK possesses a least element and in most cases defines a Boolean algebra. Moreover, every 2-series strict order is determined by its n-ary isotone functions for some natural number n.

We present new algorithms and provide an overall framework for the interaction of the classically separate steps of logic synthesis and physical layout in the design of VLSI circuits. Due to the continuous development of smaller sized fabrication processes and the subsequent domination of interconnect delays, the traditional separation of logical and physical design results in increasingly inaccurate cost functions and aggravates the design closure problem. Consequently, the interaction of physical and logical domains has become one of the greatest challenges in the design of VLSI circuits. To address this challenge, we propose different solutions for the control and datapath logic of a design, and show how to combine them to reach design closure.

The present thesis deals with coupled steady state laminar flows of isothermal incompressible viscous Newtonian fluids in plain and in porous media. The flow in the pure fluid region is usually described by the (Navier-)Stokes system of equations. The most popular models for the flow in the porous media are those suggested by Darcy and by Brinkman. Interface conditions, proposed in the mathematical literature for coupling Darcy and Navier-Stokes equations, are shortly reviewed in the thesis. The coupling of Navier-Stokes and Brinkman equations in the literature is based on the so called continuous stress tensor interface conditions. One of the main tasks of this thesis is to investigate another type of interface conditions, namely, the recently suggested stress tensor jump interface conditions. The mathematical models based on these interface conditions were not carefully investigated from the mathematical point of view, and also their validity was a subject of discussions. The considerations within this thesis are a step toward better understanding of these interface conditions. Several aspects of the numerical simulations of such coupled flows are considered: -the choice of proper interface conditions between the plain and porous media -analysis of the well-posedness of the arising systems of partial differential equations; -developing numerical algorithm for the stress tensor jump interface conditions, coupling Navier-Stokes equations in the pure liquid media with the Navier-Stokes-Brinkman equations in the porous media; -validation of the macroscale mathematical models on the base of a comparison with the results from a direct numerical simulation of model representative problems, allowing for grid resolution of the pore level geometry; -developing software and performing numerical simulation of 3-D industrial flows, namely of oil flows through car filters.

In this paper we focus on the strategic design of supply chain networks. We propose a mathematical modeling framework that captures many practical aspects of network design problems simultaneously but which have not received adequate attention in the literature. The aspects considered include: dynamic planning horizon, generic supply chain network structure, external supply of materials, inventory opportunities for goods, distribution of commodities, facility configuration, availability of capital for investments, and storage limitations. Moreover, network configuration decisions concerning the gradual relocation of facilities over the planning horizon are considered. To cope with fluctuating demands, capacity expansion and reduction scenarios are also analyzed as well as modular capacity shifts. The relation of the proposed modeling framework with existing models is discussed. For problems of reasonable size we report on our computational experience with standard mathematical programming software. In particular, useful insights on the impact of various factors on network design decisions are provided.

The question of how to model dependence structures between financial assets was revolutionized since the last decade when the copula concept was introduced in financial research. Even though the concept of splitting marginal behavior and dependence structure (described by a copula) of multidimensional distributions already goes back to Sklar (1955) and Hoeffding (1940), there were very little empirical efforts done to check out the potentials of this approach. The aim of this thesis is to figure out the possibilities of copulas for modelling, estimating and validating purposes. Therefore we extend the class of Archimedean Copulas via a transformation rule to new classes and come up with an explicit suggestion covering the Frank and Gumbel family. We introduce a copula based mapping rule leading to joint independence and as results of this mapping we present an easy method of multidimensional chi²-testing and a new estimate for high dimensional parametric distributions functions. Different ways of estimating the tail dependence coefficient, describing the asymptotic probability of joint extremes, are compared and improved. The limitations of elliptical distributions are carried out and a generalized form of them, preserving their applicability, is developed. We state a method to split a (generalized) elliptical distribution into its radial and angular part. This leads to a positive definite robust estimate of the dispersion matrix (here only given as a theoretical outlook). The impact of our findings is stated by modelling and testing the return distributions of stock- and currency portfolios furthermore of oil related commodities- and LME metal baskets. In addition we show the crash stability of real estate based firms and the existence of nonlinear dependence in between the yield curve.

The objective of the present article is to give an overview of an application of Fuzzy Logic in Regulation Thermography, a method of medical diagnosis support. An introduction to this method of the complementary medical science based on temperature measurements – so-called thermograms – is provided. The process of modelling the physician’s thermogram evaluation rules using the calculus of Fuzzy Logic is explained.