### Filtern

#### Erscheinungsjahr

- 1998 (35) (entfernen)

#### Dokumenttyp

- Preprint (26)
- Wissenschaftlicher Artikel (7)
- Dissertation (1)
- Teil eines Periodikums (1)

#### Schlagworte

- Electron states in low-dimensional structures (1)
- Quantum mechanics (1)
- Tunneling (1)
- Wannier-Bloch resonance states (1)
- Wannier-Stark systems (1)
- chaos (1)
- initial value representation (1)
- lifetime statistics (1)
- lifetimes (1)
- quantum chaos (1)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Physik (35) (entfernen)

We consider N coupled linear oscillators with time-dependent coecients. An exact complex amplitude - real phase decomposition of the oscillatory motion is constructed. This decomposition is further used to derive N exact constants of motion which generalise the so-called Ermakov-Lewis invariant of a single oscillator. In the Floquet problem of periodic oscillator coecients we discuss the existence of periodic complex amplitude functions in terms of existing Floquet solutions.

We report on the exchange bias effect as a function of the in-plane direction of the applied field in twofold symmetric, epitaxial Ni 80 Fe 20 /Fe 50 Mn 50 bilayers grown on Cu~110! single-crystal substrates. An enhancement of the exchange bias field, H eb , up to a factor of 2 is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the exchange bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and fourfold anisotropy contributions are determined with high precision. The symmetry direction of the unidirectional anisotropy switches with increasing NiFe thickness from [110] to [001].

Thermal Properties of Interacting Bose Fields and Imaginary-Time Stochastic Differential Equations
(1998)

Abstract: Matsubara Green's functions for interacting bosons are expressed as classical statistical averages corresponding to a linear imaginary-time stochastic differential equation. This makes direct numerical simulations applicable to the study of equilibrium quantum properties of bosons in the non-perturbative regime. To verify our results we discuss an oscillator with quartic anharmonicity as a prototype model for an interacting Bose gas. An analytic expression for the characteristic function in a thermal state is derived and a Higgs-type phase transition discussed, which occurs when the oscillator frequency becomes negative.

The greybody factors in BTZ black holes are evaluated from 2D CFT in the spirit of AdS3/CFT correspondence. The initial state of black holes in the usual calculation of greybody factors by effective CFT is described as Poincar'e vacuum state in 2D CFT. The normalization factor which cannot be fixed in the effective CFT without appealing to string theory is shown to be determined by the normalized bulk-to-boundary Green function. The relation among the greybody factors in different dimensional black holes is exhibited. Two kinds of (h; _h) = (1; 1) operators which couple with the boundary value of massless scalar field are discussed.

The pure-Skyrme limit of a scale-breaking Skyrmed O(3) sigma model in 1+1 dimensions is employed to study the effect of the Skyrme term on the semiclassical analysis of a field theory with instantons. The instantons of this model are self-dual and can be evaluated explicitly. They are also localised to an absolute scale, and their fluctuation action can be reduced to a scalar subsystem. This permits the explicit calculation of the fluctuation determinant and the shift in vacuum energy due to instantons. The model also illustrates the semiclassical quantisation of a Skyrmed field theory.

A formalism is developed for calculating the quasienergy states and spectrum for time-periodic quantum systems when a time-periodic dynamical invariant operator with a nondegenerate spectrum is known. The method, which circumvents the integration of the Schr-odinger equation, is applied to an integrable class of systems, where the global invariant operator is constructed. Furthermore, a local integrable approximation for more general non-integrable systems is developed. Numerical results are presented for the doubleresonance model.

The light-cone Hamiltonian approach is applied to the super D2- brane, and the equivalent area-preserving and U(1) gauge-invariant effective Lagrangian, which is quadratic in the U(1) gauge field, is derived. The latter is recognised to be that of the three- dimensional U(1) gauge theory, interacting with matter supermultiplets, in a special external induced supergravity metric and the gravitino field, depending on matter fields. The duality between this theory and 11d supermembrane theory is demonstrated in the light-cone gauge.

Abstract: The effect of intracavity Electromagnetically Induced Transparency on the properties of optical resonators and active laser devices is discussed theoretically. A pronounced frequency pulling and cavity linewidth narrowing are predicted. The effect can be used to substantially reduce classical and quantum phase noise of the beat-note of optical oscillators. Fundamental limits of this stabilization mechanism are discussed as well as its potential application to high-resolution spectroscopy.

Abstract: We predict the possibility of sharp, high-contrast resonances in the optical response of a broad class of systems, wherein interference effects are generated by coherent perturbation or interaction of dark states. The properties of these resonances can be manipulated to design a desired atomic response.

Abstract: We investigate the quantum properties of fields generated by resonantly enhanced wave mixing based on atomic coherence in Raman systems. We show that such a process can be used for generation of pairs of Stokes and anti-Stokes fields with nearly perfect quantum correlations, yielding almost complete (i.e. 100%) squeezing without the use of a cavity. We discuss the extension of the wave mixing interactions into the domain of a few interacting light quanta.