### Filtern

#### Erscheinungsjahr

- 1998 (2) (entfernen)

#### Schlagworte

- Gröbner base (1)
- confluence (1)
- coset enumeration (1)
- monoid- and group-presentations (1)
- prefix-rewriting (1)
- subgroup presentation problem (1)
- subgroup problem (1)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (2) (entfernen)

Rewriting techniques have been applied successfully to various areas of symbolic computation. Here we consider the notion of prefix-rewriting and give a survey on its applications to the subgroup problem in combinatorial group theory. We will see that for certain classes of finitely presented groups finitely generated subgroups can be described through convergent prefix-rewriting systems, which can be obtained from a presentation of the group considered and a set of generators for the subgroup through a specialized Knuth-Bendix style completion procedure. In many instances a finite presentation for the subgroup considered can be constructed from such a convergent prefix-rewriting system, thus solving the subgroup presentation problem. Finally we will see that the classical procedures for computing Nielsen reduced sets of generators for a finitely generated subgroup of a free group and the Todd-Coxeter coset enumeration can be interpreted as particular instances of prefix-completion. Further, both procedures are closely related to the computation of prefix Gr"obner bases for right ideals in free group rings.

Groups can be studied using methods from different fields such as combinatorial group theory or string rewriting. Recently techniques from Gröbner basis theory for free monoid rings (non-commutative polynomial rings) respectively free group rings have been added to the set of methods due to the fact that monoid and group presentations (in terms of string rewriting systems) can be linked to special polynomials called binomials. In the same mood, the aim of this paper is to discuss the relation between Nielsen reduced sets of generators and the Todd-Coxeter coset enumeration procedure on the one side and the Gröbner basis theory for free group rings on the other. While it is well-known that there is a strong relationship between Buchberger's algorithm and the Knuth-Bendix completion procedure, and there are interpretations of the Todd-Coxeter coset enumeration procedure using the Knuth-Bendix procedure for special cases, our aim is to show how a verbatim interpretation of the Todd-Coxeter procedure can be obtained by linking recent Gröbner techniques like prefix Gröbner bases and the FGLM algorithm as a tool to study the duality of ideals. As a side product our procedure computes Nielsen reduced generating sets for subgroups in finitely generated free groups.