### Filtern

#### Erscheinungsjahr

- 2000 (96) (entfernen)

#### Dokumenttyp

- Preprint (74)
- Wissenschaftlicher Artikel (12)
- Bericht (7)
- Diplomarbeit (1)
- Dissertation (1)
- Teil eines Periodikums (1)

#### Sprache

- Englisch (96) (entfernen)

#### Schlagworte

- resonances (6)
- Quantum mechanics (5)
- lifetimes (5)
- Wannier-Stark systems (4)
- AG-RESY (3)
- HANDFLEX (3)
- branch and cut (3)
- facets (3)
- facility location (3)
- hub location (3)

#### Fachbereich / Organisatorische Einheit

Abstract: Winding number transitions from quantum to classical behavior are studied in the case of the 1+1 dimensional Mottola-Wipf model with the space coordinate on a circle for exploring the possibility of obtaining transitions of second order. The model is also studied as a prototype theory which demonstrates the procedure of such investigations. In the model at hand we find that even on a circle the transitions remain those of first order.

Abstract: Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the winding number transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.

A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this method we calculate the complex Wannier-Stark spectrum for a non-separable 2D potential realized in optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.

The paper studies the effect of a weak periodic driving on metastable Wannier-Stark states. The decay rate of the ground Wannier-Stark states as a continuous function of the driving frequency is calculated numerically. The theoretical results are compared with experimental data of Wilkinson et at. [Phys.Rev.Lett.76, 4512 (1996)] obtained for cold sodium atoms in an accelerated optical lattice.

For most applications the used transport service providers are predetermined during the development of the application. This makes it difficult to consider the application communication requirements and to exploit specific features of the network technology. Specialized protocols that are more efficient and offer a qualitative improved service are typically not supported by most applications because they are not commonly available. In this paper we propose a concept for the realization of protocol independent transport services. Only a transport service is predetermined during the development of the application and an appropriate transport service provider is dynamically selected at run time. This enables to exploit specialized protocols if possible, but standard protocols could still be used if necessary. The main focus of this paper is how a transport service could provide a new transport service provider transparently to existing applications. A prototype is presented that maps TCP/IP based applications to an ATM specific transport service provider which offers a reliable and unreliable transport service like TCP/IP.

Abstract: The calculation of absorption cross sections for minimal scalars in supergravity backgrounds is an important aspect of the investigation of AdS/CFT correspondence and requires a matching of appropriate wave functions. The low energy case has attracted particular attention. In the following the dependence of the cross section on the matching point is investigated. It is shown that the low energy limit is independent of the matching point and hence exhibits universality. In the high energy limit the independence is not maintained, but the result is believed to possess the correct energy dependence.

An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

Abstract: A Born-Infeld theory describing a D2-brane coupled to a 4-form RR field strength is considered, and the general solutions of the static and Euclidean time equations are derived and discussed. The period of the bounce solutions is shown to allow a consideration of tunneling and quantum-classical transitions in the sphaleron region. The order of such transitions, depending on the strength of the RR field strength, is determined. A criterion is then derived to confirm these findings.

Abstract: We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four wave mixing in a coherently driven dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that due to the large group velocity delays associated with coherent media, an extremely narrow oscillator linewidth is possible, making a narrow-band source of non-classical radiation feasible.