### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (159) (entfernen)

#### Schlagworte

#### Fachbereich / Organisatorische Einheit

- Fachbereich Physik (159) (entfernen)

We report on the exchange bias effect as a function of the in-plane direction of the applied field in two-fold symmetric, epitaxial Ni80Fe20/Fe50Mn50 bilayers grown on Cu(110) single crystal substrates. An enhancement of the exchange bias field, Heb, up to a factor of two is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the ex-change bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and four-fold anisotropy contributions are determined with high precision. The symmetry direction of the unidirec-tional anisotropy switches with increasing NiFe thickness from [110] to [001].

Abstract: The classification of quasi - primary fields is outlined. It is proved that the only conserved quasi - primary currents are the energy - momentum tensor and the O(N)-Noether currents. Derivation of all quasi - primary fields and the resolution of degeneracy is sketched. Finally the limits d = 2 and d = 4 of the space dimension are discussed. Whereas the latter is trivial the former is only almost so. (To appear in the Proceedings of the XXII Conference on Differential Geometry Methods in Theoretical Physics, Ixtapa, Mexico, September 20-24, 1993)

The distribution of quasiprimary fields of fixed classes characterized by their O(N) representations Y and the number p of vector fields from which they are composed at N=infty in dependence on their normal dimension delta is shown to obey a Hardy-Ramanujan law at leading order in a 1/N-expansion. We develop a method of collective fusion of the fundamental fields which yields arbitrary qps and resolves any degeneracy.

Recently renewed interest in solitons has arisen in connection with exceptional statistics occuring in low-dimensional quantum field theory. The nonperturbative approach to quantum solitons [1, 2, 3, 4, 5], based on the notion of a disorder variable [6, 7], does not make use of the well-known semiclassical quantisation procedure around classical soliton solutions [8]. In a recent article [9] the author introduced multicomponent scalar field models, treated nonperturbatively on a Euclidean space-time lattice. The exponentially decaying disorder correlation functions are connected with soliton fields showing nonAbelian braid group statistics. It is the aim of this note to present the corresponding classical soliton solutions, which do not seem to have appeared in the literature.

Abstract: We calculate exact analytical expressions for O(alpha s) 3-jet and O (alpha^2 s ) 4-jet cross sections in polarized deep inelastic lepton nucleon scattering. Introducing an invariant jet definition scheme, we present differential distributions of 3- and 4-jet cross sections in the basic kinematical variables x and W^2 as well as total jet cross sections and show their dependence on the chosen spin-dependent (polarized) parton distributions. Noticebly differences in the predictions are found for the two extreme choices, i.e. a large negative sea-quark density or a large positive gluon density. Therefore, it may be possible to discriminate between different parametrizations of polarized parton densities, and hence between the different physical pictures of the proton spin underlying these parametrizations.

Double Scaling Limits, Airy Functions and Multicritical Behaviour in O(N) Vektor Sigma Models
(1995)

O(N) vector sigma models possessing catastrophes in their action are studied. Coupling the limit N - > infinity with an appropriate scaling behaviour of the coupling constants, the partition function develops a singular factor. This is a generalized Airy function in the case of spacetime dimension zero and the partition function of a scalar field theory for positive spacetime dimension.

A new approach with BRST invariance is suggested to cure the degeneracy problem of ill defined path integrals in the path- integral calculation of quantum mechanical tunneling effects in which the problem arises due to the occurrence of zero modes. The Faddeev-Popov procedure is avoided and the integral over the zero mode is transformed in a systematic way into a well defined integral over instanton positions. No special procedure has to be adopted as in the Faddeev-Popov method in calculating the Jacobian of the transformation. The quantum mechanical tunneling for the Sine-Gordon potential is used as a test of the method and the width of the lowest energy band is obtained in exact agreement with that of WKB calculations.

Oscillatory surface in-plane lattice spacing during growth of Co and Cu on a Cu(001) single crystal
(1995)