Filtern
Fachbereich / Organisatorische Einheit
- Fachbereich Mathematik (31) (entfernen)
Erscheinungsjahr
Dokumenttyp
- Wissenschaftlicher Artikel (31) (entfernen)
Schlagworte
- Hysteresis (2)
- MINT (2)
- Mathematische Modellierung (2)
- Schule (2)
- mathematical modeling (2)
- nonlinear diffusion (2)
- Anisotropic smoothness classes (1)
- Banach lattice (1)
- CAQ (1)
- Fatigue (1)
-
On Changepoint Detection in a Series of Stimulus-Response Data (2018)
- In this paper, we demonstrate the power of functional data models for a statistical analysis of stimulus-response experiments which is a quite natural way to look at this kind of data and which makes use of the full information available. In particular, we focus on the detection of a change in the mean of the response in a series of stimulus-response curves where we also take into account dependence in time.
-
Einfaches Motion Capturing in MATLAB (2017)
- Der vorliegende Artikel befasst sich mit der Realisierung eines einfachen Motion Capturing Verfahrens in MATLAB als Vorschlag für eine Umsetzung in der Schule. Die zugrunde liegende Mathematik kann ab der Mittelstufe leicht vermittelt werden. Je nach technischer Ausstattung können mit einfachen Mitteln farbige Marker in Videos oder Webcam-Streams verfolgt werden. Notwendige Konzepte und Algorithmen werden im Artikel beleuchtet.
-
Wir entwickeln einen Synthesizer (2017)
- Die Akustik liefert einen interessanten Hintergrund, interdisziplinären und fächerverbindenen Unterricht zwischen Mathematik, Physik und Musik durchzuführen. SchülerInnen können hierbei beispielsweise experimentell tätig sein, indem sie Audioaufnahmen selbst erzeugen und sich mit Computersoftware Frequenzspektren erzeugen lassen. Genauso können die Schüler auch Frequenzspektren vorgeben und daraus Klänge erzeugen. Dies kann beispielsweise dazu dienen, den Begriff der Obertöne im Musikunterricht physikalisch oder mathematisch greifbar zu machen oder in der Harmonielehre Frequenzverhältnisse von Intervallen und Dreiklängen näher zu untersuchen. Der Computer ist hier ein sehr nützliches Hilfsmittel, da der mathematische Hintergrund dieser Aufgabe -- das Wechseln zwischen Audioaufnahme und ihrem Frequenzbild -- sich in der Fourier-Analysis findet, die für SchülerInnen äußerst anspruchsvoll ist. Indem man jedoch die Fouriertransformation als numerisches Hilfsmittel einführt, das nicht im Detail verstanden werden muss, lässt sich an anderer Stelle interessante Mathematik betreiben und die Zusammenhänge zwischen Akustik und Musik können spielerisch erfahren werden. Im folgenden Beitrag wird eine Herangehensweise geschildert, wie wir sie bereits bei der Felix-Klein-Modellierungswoche umgesetzt haben: Die SchülerInnen haben den Auftrag erhalten, einen Synthesizer zu entwickeln, mit dem verschiedene Musikinstrumente nachgeahmt werden können. Als Hilfsmittel haben sie eine kurze Einführung in die Eigenschaften der Fouriertransformation erhalten, sowie Audioaufnahmen verschiedener Instrumente.
-
Minimizing the Number of Apertures in Multileaf Collimator Sequencing with Field Splitting (2015)
- In this paper we consider the problem of decomposing a given integer matrix A into a positive integer linear combination of consecutive-ones matrices with a bound on the number of columns per matrix. This problem is of relevance in the realization stage of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf collimators with limited width. Constrained and unconstrained versions of the problem with the objectives of minimizing beam-on time and decomposition cardinality are considered. We introduce a new approach which can be used to find the minimum beam-on time for both constrained and unconstrained versions of the problem. The decomposition cardinality problem is shown to be NP-hard and an approach is proposed to solve the lexicographic decomposition problem of minimizing the decomposition cardinality subject to optimal beam-on time.
-
A well-balanced solver for the Saint Venant Equations with variable cross-section (2014)
- In this paper we construct a numerical solver for the Saint Venant equations. Special attention is given to the balancing of the source terms, including the bottom slope and variable cross- sectional profiles. Therefore a special discretization of the pressure law is used, in order to transfer analytical properties to the numerical method. Based on this approximation a well- balanced solver is developed, assuring the C-property and depth positivity. The performance of this method is studied in several test cases focusing on accurate capturing of steady states.
-
Homogeneous Penalizers and Constraints in Convex Image Restoration (2012)
- Recently convex optimization models were successfully applied for solving various problems in image analysis and restoration. In this paper, we are interested in relations between convex constrained optimization problems of the form \({\rm argmin} \{ \Phi(x)\) subject to \(\Psi(x) \le \tau \}\) and their penalized counterparts \({\rm argmin} \{\Phi(x) + \lambda \Psi(x)\}\). We recall general results on the topic by the help of an epigraphical projection. Then we deal with the special setting \(\Psi := \| L \cdot\|\) with \(L \in \mathbb{R}^{m,n}\) and \(\Phi := \varphi(H \cdot)\), where \(H \in \mathbb{R}^{n,n}\) and \(\varphi: \mathbb R^n \rightarrow \mathbb{R} \cup \{+\infty\} \) meet certain requirements which are often fulfilled in image processing models. In this case we prove by incorporating the dual problems that there exists a bijective function such that the solutions of the constrained problem coincide with those of the penalized problem if and only if \(\tau\) and \(\lambda\) are in the graph of this function. We illustrate the relation between \(\tau\) and \(\lambda\) for various problems arising in image processing. In particular, we point out the relation to the Pareto frontier for joint sparsity problems. We demonstrate the performance of the constrained model in restoration tasks of images corrupted by Poisson noise with the \(I\)-divergence as data fitting term \(\varphi\) and in inpainting models with the constrained nuclear norm. Such models can be useful if we have a priori knowledge on the image rather than on the noise level.
-
The Generalized Assignment Problem with Minimum Quantities (2012)
- We consider a variant of the generalized assignment problem (GAP) where the amount of space used in each bin is restricted to be either zero (if the bin is not opened) or above a given lower bound (a minimum quantity). We provide several complexity results for different versions of the problem and give polynomial time exact algorithms and approximation algorithms for restricted cases. For the most general version of the problem, we show that it does not admit a polynomial time approximation algorithm (unless P=NP), even for the case of a single bin. This motivates to study dual approximation algorithms that compute solutions violating the bin capacities and minimum quantities by a constant factor. When the number of bins is fixed and the minimum quantity of each bin is at least a factor \(\delta>1\) larger than the largest size of an item in the bin, we show how to obtain a polynomial time dual approximation algorithm that computes a solution violating the minimum quantities and bin capacities by at most a factor \(1-\frac{1}{\delta}\) and \(1+\frac{1}{\delta}\), respectively, and whose profit is at least as large as the profit of the best solution that satisfies the minimum quantities and bin capacities strictly. In particular, for \(\delta=2\), we obtain a polynomial time (1,2)-approximation algorithm.
-
Complexity and Approximability of the Maximum Flow Problem with Minimum Quantities (2012)
- We consider the maximum flow problem with minimum quantities (MFPMQ), which is a variant of the maximum flow problem where the flow on each arc in the network is restricted to be either zero or above a given lower bound (a minimum quantity), which may depend on the arc. This problem has recently been shown to be weakly NP-complete even on series-parallel graphs. In this paper, we provide further complexity and approximability results for MFPMQ and several special cases. We first show that it is strongly NP-hard to approximate MFPMQ on general graphs (and even bipartite graphs) within any positive factor. On series-parallel graphs, however, we present a pseudo-polynomial time dynamic programming algorithm for the problem. We then study the case that the minimum quantity is the same for each arc in the network and show that, under this restriction, the problem is still weakly NP-complete on general graphs, but can be solved in strongly polynomial time on series-parallel graphs. On general graphs, we present a \((2 - 1/\lambda) \)-approximation algorithm for this case, where \(\lambda\) denotes the common minimum quantity of all arcs.
-
Eine transfinite Zahl als Grenzwert (2010)
- Wir zeigen, dass Aleph-Null diejenige transfinite Kardinalzahl ist, gegen die alle Zahlenfolgen streben, die (nach gängiger Definition) gegen (positiv) unendlich streben, und beleuchten dessen Konsequenzen. Diese beinhalten u.a., dass die Exponentialfunktion im Unendlichen unstetig ist.
-
A Mathematical Model for Diffusion and Exchange Phenomena in Ultra Napkins (1992)
- The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.