### Refine

#### Year of publication

- 2001 (37) (remove)

#### Document Type

- Preprint (37) (remove)

#### Keywords

- AG-RESY (7)
- RODEO (6)
- vibration (3)
- Mathematikunterricht (2)
- Modellierung (2)
- genetic algorithms (2)
- heat equation (2)
- praxisorientiert (2)
- semiconductor superlattice (2)
- stationary radiative transfer equation (2)

#### Faculty / Organisational entity

The anchored hyperplane location problem is to locate a hyperplane passing through some given points P IR^n and minimizing either the sum of weighted distances (median problem), or the maximum weighted distance (center problem) to some other points Q IR^n . If the distances are measured by a norm, it will be shown that in the median case there exists an optimal hyperplane that passes through at least n - k affinely independent points of Q, if k is the maximum number of affinely independent points of P. In the center case, there exists an optimal hyperplane which isatmaximum distance to at least n - k + 1 affinely independent points of Q. Furthermore, if the norm is a smooth norm, all optimal hyperplanes satisfy these criteria. These new results generalize known results about unrestricted hyperplane location problems.

Abstract: The basic concepts of selective multiscale reconstruction of functions on the sphere from error-affected data is outlined for scalar functions. The selective reconstruction mechanism is based on the premise that multiscale approximation can be well-represented in terms of only a relatively small number of expansion coefficients at various resolution levels. A new pyramid scheme is presented to efficiently remove the noise at different scales using a priori statistical information.

Abstract: Evacuation problems can be modeled as flow problems in dynamic networks. A dynamic network is defined by a directed graph G = (N,A) with sources, sinks and non-negative integral travel times and capacities for every arc (i,j) e A. The earliest arrival flow problem is to send a maximum amount of dynamic flow reaching the sink not only for the given time horizon T, but also for any time T' < T . This problem mimics the evacuation problem of public buildings where occupancies may not known. For the buildings where the number of occupancies is known and concentrated only in one source, the quickest flow model is used to find the minimum egress time. We propose in this paper a solution procedure for evacuation problems with a single source of the building where the occupancy number is either known or unknown. The possibility that the flow capacity may change due to the increasing of smoke density or fire obstructions can be mirrored in our model. The solution procedure looks iteratively for the shortest conditional augmenting path (SCAP) from source to sink and compute the time intervals in which flow reaches the sink via this path.

The purpose of satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry (SGG) is to determine the gravitational field on and outside the Earth's surface from given gradients of the gravitational potential and/or the gravitational field at satellite altitude. In this paper both satellite techniques are analysed and characterized from mathematical point of view. Uniqueness results are formulated. The justification is given for approximating the external gravitational field by finite linear combination of certain gradient fields (for example, gradient fields of single-poles or multi-poles) consistent to a given set of SGG and/or SST data. A strategy of modelling the gravitational field from satellite data within a multiscale concept is described; illustrations based on the EGM96 model are given.

Wannier-Stark states for semiconductor superlattices in strong static fields, where the interband Landau-Zener tunneling cannot be neglected, are rigorously calculated. The lifetime of these metastable states was found to show multiscale oscillations as a function of the static field, which is explained by an interaction with above-barrier resonances. An equation, expressing the absorption spectrum of semiconductor superlattices in terms of the resonance Wannier-Stark states is obtained and used to calculate the absorption spectrum in the region of high static fields.

Given a railway network together with information on the population and their use of the railway infrastructure, we are considering the e ffects of introducing new train stops in the existing railway network. One e ffect concerns the accessibility of the railway infrastructure to the population, measured in how far people live from their nearest train stop. The second effect we study is the change in travel time for the railway customers that is induced by new train stops. Based on these two models, we introduce two combinatorial optimization problems and give NP-hardness results for them. We suggest an algorithmic approach for the model based on travel time and give first experimental results.

This article presents contributions in the field of path planning for industrial robots with 6 degrees of freedom. This work presents the results of our research in the last 4 years at the Institute for Process Control and Robotics at the University of Karlsruhe. The path planning approach we present works in an implicit and discretized C-space. Collisions are detected in the Cartesian workspace by a hierarchical distance computation. The method is based on the A* search algorithm and needs no essential off-line computation. A new optimal discretization method leads to smaller search spaces, thus speeding up the planning. For a further acceleration, the search was parallelized. With a static load distribution good speedups can be achieved. By extending the algorithm to a bidirectional search, the planner is able to automatically select the easier search direction. The new dynamic switching of start and goal leads finally to the multi-goal path planning, which is able to compute a collision-free path between a set of goal poses (e.g., spot welding points) while minimizing the total path length.

The vibration induced in a deformable object upon automatic handling by robot manipulators can often be bothersome. This paper presents a force/torque sensor-based method for handling deformable linear objects (DLOs) in a manner suitable to eliminate acute vibration. An adjustment-motion that can be attached to the end of an arbitrary end-effector's trajectory is employed to eliminate vibration of deformable objects. Differently from model-based methods, the presented sensor-based method does not employ any information from previous motions. The adjustment-motion is generated automatically by analyzing data from a force/torque sensor mounted on the robot wrist. Template matching technique is used to find out the matching point between the vibrational signal of the DLO and a template. Experiments are conducted to test the new method under various conditions. Results demonstrate the effectiveness of the sensor-based adjustment-motion.

The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. Especially, approaches to calculate motions with specific behavior in point contacts between the object and environment are regarded. For single point contacts, motions based on generalized rotations solving the direct and inverse manipulation problem are investigated. The latter problem is additionally tackled by simple rotation and translation motions. For double and multiple point contacts, motions based on Splines are suggested. In experimental results with steel springs, the predicted and measured effect for each approach are compared.

Abstract: In the context of AdS/CFT correspondence the two Wilson loop correlator is examined at both zero and finite temperatures. On the basis of an entirely analytical approach we have found for Nambu-Goto strings the functional relation dSc(Reg) /dL = 2*pi*k between Euclidean action Sc and loop separation L with integration constant k, which corresponds to the analogous formula for point-particles. The physical implications of this relation are explored in particular for the Gross-Ooguri phase transition at finite temperature.