### Filtern

#### Erscheinungsjahr

- 1993 (26) (entfernen)

#### Dokumenttyp

- Preprint (26) (entfernen)

#### Schlagworte

#### Fachbereich / Organisatorische Einheit

This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.

Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

Based on experiences from an autonomous mobile robot project called MOBOT -III, we found hard realtime-constraints for the operating-system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operatingsystem-kernel", not limited to mobile- robot-projects only, but which might be useful also wherever you have to guarantee a high reliability of a realtime-system. The focus in this article is on a communication-scheme fulfilling the demanded (hard realtime-) assurances although not implying time-delays or jitters on the critical informationchannels. The central chapters discuss a locking-free shared buffer management, without the need for interrupts and a way to arrange the communication architecture in order to produce minimal protocol-overhead and short cycle-times. Most of the remaining communication-capacity (if there is any) is used for redundant transfers, increasing the reliability of the whole system. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

This paper is concerned with the development of a self-adaptive spatial descretization for PDEs using a wavelet basis. A Petrov-Galerkin method [LPT91] is used to reduce the determination of the unknown at the new time step to the computation of scalar products. These have to be discretized in an appropriate way. We investigate this point in detail and devise an algorithm that has linear operation count with respect to the number of unknowns. It is tested with spline wavelets and Meyer wavelets retaining the latter for their better localisation at finite precision. The algorithm is then applied to the one dimensional thermodiffusive equations. We show that the adaption strategy merits to be modified in order to take into account the particular and very strong nonlinearity of this problem. Finally, a supplementary Fourier discretization permits the computation of two dimensional flame fronts.

Questions arising from Statistical Decision Theory, Bayes Methods and other probability theoretic fields lead to concepts of orthogonality of a family of probability measures. In this paper we therefore give a sketch of a generalized information theory which is very helpful in considering and answering those questions. In this adapted information theory Shannon's classical transition channels modelled by finite stochastic matrices are replaced by compact families of probability measures that are uniformly integrable. These channels are characterized by concepts such as information rate and capacity and by optimal priors and the optimal mixture distribution. For practical studies we introduce an algorithm to calculate the capacity of the whole probability family which is appli cable even for general output space. We then explain how the algorithm works and compare its numerical costs with those of the classical Arimoto-Blahut-algorithm.

The paper presents the shuffle algorithm proposed by Baganoff, which can be implemented in simulation methods for the Boltzmann equation to simplify the binary collision process. It is shown that the shuffle algborithm is a discrete approximation of an isotropic collision law. The transition probability as well as the scattering cross section of the shuffle algorithm are opposed to the corresponding quantities of a hard-sphere model. The discrepancy between measures on a sphere is introduced in order to quantify the approximation error by using the shuffle algorithm.

We study deterministic conditional rewrite systems, i.e. conditional rewrite systemswhere the extra variables are not totally free but 'input bounded'. If such a systemR is quasi-reductive then !R is decidable and terminating. We develop a critical paircriterion to prove confluence if R is quasi-reductive and strongly deterministic. In thiscase we prove that R is logical, i.e./!R==R holds. We apply our results to proveHorn clause programs to be uniquely terminating.This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314, Project D4

Abstract: The classification of quasi - primary fields is outlined. It is proved that the only conserved quasi - primary currents are the energy - momentum tensor and the O(N)-Noether currents. Derivation of all quasi - primary fields and the resolution of degeneracy is sketched. Finally the limits d = 2 and d = 4 of the space dimension are discussed. Whereas the latter is trivial the former is only almost so. (To appear in the Proceedings of the XXII Conference on Differential Geometry Methods in Theoretical Physics, Ixtapa, Mexico, September 20-24, 1993)

We discuss how kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary. The boundary (matching) conditions arise from requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and from the requirement that the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from the kinetic equation (holding on the other side), be satisfied at the boundary. We do a case study involving the Knudsen gas equation on one side and a system involving the Burgers equation on the other side in section 2, and a discussion for the coupling of the full Boltzmann equation with the compressible Navier-Stokes equations in section 3.