### Refine

#### Document Type

- Preprint (20) (remove)

#### Keywords

- Mixture Models (2)
- hidden variables (2)
- mixture (2)
- nonparametric regression (2)
- time series (2)
- AR-ARCH (1)
- Autoregression (1)
- CUSUM statistic (1)
- EM algorith (1)
- EM algorithm (1)

In this paper we deal with the problem of fitting an autoregression of order p to given data coming from a stationary autoregressive process with infinite order. The paper is mainly concerned with the selection of an appropriate order of the autoregressive model. Based on the so-called final prediction error (FPE) a bootstrap order selection can be proposed, because it turns out that one relevant expression occuring in the FPE is ready for the application of the bootstrap principle. Some asymptotic properties of the bootstrap order selection are proved. To carry through the bootstrap procedure an autoregression with increasing but non-stochastic order is fitted to the given data. The paper is concluded by some simulations.

Kernel smoothing in nonparametric autoregressive schemes offers a powerful tool in modelling time series. In this paper it is shown that the bootstrap can be used for estimating the distribution of kernel smoothers. This can be done by mimicking the stochastic nature of the whole process in the bootstrap resampling or by generating a simple regression model. Consistency of these bootstrap procedures will be shown.

Knowledge about the distribution of a statistical estimator is important for various purposes like, for example, the construction of confidence intervals for model parameters or the determiation of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap which is based on an imitation of the probabilistic structure of the data generating process on the basis of the information provided by a given set of random observations. In this paper we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.

In this paper, we discuss the problem of testing for a changepoint in the structure
of an integer-valued time series. In particular, we consider a test statistic
of cumulative sum (CUSUM) type for general Poisson autoregressions of order
1. We investigate the asymptotic behaviour of conditional least-squares estimates
of the parameters in the presence of a changepoint. Then, we derive the
asymptotic distribution of the test statistic under the hypothesis of no change,
allowing for the calculation of critical values. We prove consistency of the test,
i.e. asymptotic power 1, and consistency of the corresponding changepoint estimate.
As an application, we have a look at changepoint detection in daily
epileptic seizure counts from a clinical study.

In the following, we discuss a procedure for interpolating a spatial-temporal stochastic process. We stick to a particular, moderately general model but the approach can be easily transered to other similar problems. The original data, which motivated this work, are measurements of gas concentrations (SO2, NO, O2) and several meteorological parameters (temperature, sun radiation, procipitation, wind speed etc.). These date have been and are still recorded twice every hour at several irregularly located places in the forests of the state Rheinland-Pfalz as part of a program monitoring the air pollution in the forests.

Maximum Likelihood Estimators for Markov Switching Autoregressive Processes with ARCH Component
(2009)

We consider a mixture of AR-ARCH models where the switching between the basic states of the observed time series is controlled by a hidden Markov chain. Under simple conditions, we prove consistency and asymptotic normality of the maximum likelihood parameter estimates combining general results on asymptotics of Douc et al (2004) and of geometric ergodicity of Franke et al (2007).

We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models. We propose nonparametric estimators for the functions characterizing the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties.